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ABSTRACT 
Traffic flow prediction is a critical issue for researchers and 
practitioners in the field of transportation. Due to the high 
nonlinearity and complexity of traffic data, deep learning 
approaches have attracted much interest in recent years. However, 
existing studies seldom consider the topology of these urban roads 
and the connectivity of the monitor sensors. As we know, the real 
cause of the spread of traffic congestion is the connectivity of 
these road segments, rather than their spatial proximity. But it is 
challenging to model the topology of the urban traffic networks 
for traffic flow prediction. In this short research paper, we present 
an urban traffic knowledge graph-driven spatial-temporal graph 
convolutional networks for traffic flow prediction. We first 
construct an urban traffic knowledge graph that can represent the 
physical connectivity between roads and monitor sensors. Then, 
we use the urban traffic knowledge graph to improve the traffic 
flow networks. Finally, we combine the knowledge graph and 
traffic flow as the input of a spatial-temporal graph convolutional 
backbone networks. Experiments on two real-world traffic 
datasets verify the effectiveness of our approach.  
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1 Introduction 
Traffic flow prediction has gained more and more attention 

with the rapid development of intelligent transportation systems 
(ITSs) [1]. Traffic flow prediction is an indispensable part of ITS, 
especially on the urban roads which has large traffic flows and 
frequently changing vehicle speed. As the great social and 
economic value, traffic flow prediction has become a popular 
research topic. The traditional methods often adopt statistical 
models (e.g. VAR [2]) and machine learning models (e.g. SVM 
[3]). The statistical models usually perform poorly in practice, and 
the machine learning models need careful feature engineering. 

With the development of deep learning, these traditional methods 
are rapidly eliminated. 

Deep learning approaches have been widely and successfully 
applied to various traffic tasks nowadays. Significant progress has 
been made in the research of traffic flow prediction. Some 
researchers have used RNNs, such as LSTM [4, 5] and GRU [6] 
to model the temporal dependence of traffic flows. Some 
researchers have used CNNs [7] to model the spatial dependence 
of traffic flows. And some have used a combination of the two 
[8].  

As traffic data are recorded via monitor sensors at fixed points 
in time and at fixed locations distributed in continuous space, 
urban traffic flow prediction is a typical problem of spatial-
temporal data forecasting. In recent years, GNNs have emerged to 
better model the spatial and temporal dependences of roads and 
improve the prediction accuracy. Such models include the T-GCN 
[9], STGCN [11], DCRNN [15], ASTGCN [12], LSGCN [13], 
SeqGNN [14] and KST-GCN [10], among others. SeqGNN shows 
that the connectivity of roads is very important, rather than their 
spatial proximity. And KST-GCN shows that the knowledge of 
traffic can be helpful for the traffic prediction, but the external 
knowledge is difficult to obtain and the effect is not significant.  

Our research shows that, it is very practical to make full use of 
the internal knowledge of the traffic networks, such as the 
topology of these urban roads and the connectivity of the monitor 
sensors. As we know, the real cause of the spread of traffic 
congestion is the connectivity of these roads within the road 
network topology. However, existing studies rarely consider this 
factor. Therefore, how to design an effective method to model the 
topology knowledge of the urban traffic networks is the main 
challenge. In this short research paper, the main contributions of 
this paper are summarized as follows: 

1. We construct an urban traffic knowledge graph that can 
represent the physical connectivity between roads and 
monitor sensors. And use it to improve the traffic flow 
networks. 
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2. We provide a feasible network framework to model the 
topology knowledge of the urban traffic networks. 

3. We evaluate our method on two real-world traffic datasets 
and the experimental results show the effectiveness of this 
method. 

The rest of this paper is organized as follows: Section 2 will 
give a brief analysis of the traffic flow networks and the traffic 
flow prediction problem; Section 3 will introduce the urban traffic 
knowledge graph-driven spatial-temporal graph convolutional 
networks designed in this paper; Section 4 evaluates the 
performance of our model in terms of traffic flow prediction and 
presents the experimental results; Section 5 concludes the paper 
with some ideas for future research. 

2 Preliminary 

2.1 Traffic Flow Networks  
In this study, we define a traffic flow network as an undirected 
graph 𝑮𝑮 = (𝑽𝑽,𝑬𝑬,𝑨𝑨,𝑿𝑿), where 𝑽𝑽 is the set of nodes, indicating the 
monitor sensors; 𝑬𝑬 is a set of edges, indicating the connectivity 
between the nodes; 𝑨𝑨 denotes the adjacency matrix of graph 𝑮𝑮; 𝑿𝑿 
is the history traffic flow data of 𝑽𝑽. 

In practice, a node may represent a monitor sensor located at 
the corresponding road of the traffic networks, as shown in Figure 
1(a). Each node detects traffic flow with the same sampling 
frequency, that is, the features of nodes change at each time slice, 
as shown in Figure 1(b). Most of the existing studies use straight-
line distance stands for the connectivity between two nodes, 
ignoring the importance of the road network connectivity. We will 
introduce the construction method of 𝑬𝑬 in detail in the section 3.2. 

 
Figure 1: (a) A road network with 9 monitor sensors. (b) The 
traffic flow networks over time form T to T+n, where the 
nodes stand for the monitor sensors. The color of the nodes 
represents the traffic flow detected by the monitor sensors, 
which red means heavy traffic and green means little traffic. 

2.2 Traffic Flow Prediction 
For a traffic flow network 𝑮𝑮 = (𝑽𝑽,𝑬𝑬,𝑨𝑨,𝑿𝑿), let 𝒙𝒙𝒕𝒕𝒊𝒊  represents the 
traffic flow value of the node 𝒊𝒊 at time step 𝒕𝒕, and 𝒙𝒙𝒕𝒕 represents 
the traffic flow values of 𝑽𝑽 at time step 𝒕𝒕. Given history traffic 
flow data 𝑿𝑿 = (𝒙𝒙𝟏𝟏,𝒙𝒙𝟐𝟐, . . . ,𝒙𝒙𝒌𝒌)𝑻𝑻, and the urban traffic knowledge 
graph 𝑲𝑲𝑮𝑮 , the purpose of traffic flow prediction is to predict the 
traffic flow values of all nodes in future time steps, namely 𝒀𝒀. The 
problem can be considered as learning the function 𝒇𝒇 , which 
denoted in Equation 1. For more details on urban traffic 
knowledge graph 𝑲𝑲𝑮𝑮, refer to section3.1. 

𝑌𝑌 = 𝑓𝑓(𝐺𝐺,𝐾𝐾𝐺𝐺)   (1) 

3 Proposed Method 

3.1 Urban Traffic Knowledge Graph 
We first define a simple ontology of the urban traffic knowledge 
graph, as shown in Figure 2. We define 2 classes and 4 
relationships. The 2 classes are easy to understand, but the 
relationships need to be explained. 

The relationship intersect means that two roads are directly 
connected or intersected. The relationship located means that a 
monitor sensor is located on a road. The relationship next_to 
means two sensors are located on the same road and next to each 
other. The relationship near means two sensors are located on 
different roads and next to each other. These four relationships 
can subtly represent the spatial knowledge of the urban road 
networks.  

 

Figure 2: The ontology of urban traffic knowledge graph. 

 

Figure 3: The urban traffic knowledge graph of the road 
networks in Figure 1(a).  
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Based on the ontology, we can extract the urban traffic 
knowledge graph at a low cost. First, we extract all road and 
sensor entities, in which the road entity is identified by name and 
the sensor entity is identified by number. Secondly, we get the 
longitudes and latitudes of the roads from the Open Government 
Data, and then get the geographic information about the sensors 
from the datasets. Thirdly, we construct the relationships intersect 
and located by calculating longitudes and latitudes. Fourthly, we 
construct the relationship next_to by calculating the adjacency of 
sensors road by road. Fifthly, we construct the relationship near 
by searching the sensors near the corners. A constructed 
knowledge graph is shown in Figure 3. 

3.2 Knowledge Based Traffic Flow Networks 
For the traffic flow network 𝑮𝑮 = (𝑽𝑽,𝑬𝑬,𝑨𝑨,𝑿𝑿), we should build 𝑬𝑬 
first, and then we can get 𝑨𝑨 with simple processing. As the edges 
indicate the connectivity between the nodes, we can use the 
distance between nodes to judge whether they should have edges. 
And the best way is to calculate the routing distance, rather than 
straight-line distance, as shown in Figure 4(a). But the cost of 
calculating the routing distance between all nodes is very high, so 
we use the urban traffic knowledge graph to increase efficiency, 
the steps are as follow: 

1. Select all the relationships of type next_to and near from the 
urban traffic knowledge graph. 

2. Calculate the routing distance of the selected relationships. 
3. If the routing distance is less than the threshold, add the 

corresponding edge to the traffic flow network. 

Through this method, we filter out the edge between sensor 7 
and sensor 8, as shown in Figure 4(b), and get the final traffic 
flow network, as shown in Figure 4(c). 

 
Figure 4: (a) The route distance between sensor 1 and sensor 9 
is much greater than the straight-line distance. (b) Calculate 
the edges that can be removed. (c) The traffic flow network of 
the road networks in Figure 1(a). 

3.3 Knowledge graph-driven spatial-temporal 
graph convolutional networks 

Figure 5 presents the overall framework of the knowledge graph-
driven spatial-temporal graph convolutional networks. We 
provide a feasible solution for modeling the topology knowledge 
of the urban traffic networks. 

To begin with, we derive the embedding of the entities with a 
knowledge graph representation learning model, here we use 
TransD [16]. Then, we get the history traffic flow data 𝑿𝑿  and 
adjacency matrix 𝑨𝑨 from the traffic flow network 𝑮𝑮. And then, we 
combine the knowledge graph embeddings and traffic flow as the 
input of a graph convolutional networks. Furthermore, we use the 
recurrent neural networks to capture the temporal dependency. 
Finally, we use a fully connected layer to generate the predicted 
data.  

 

Figure 5: The network Architecture. FC: Full connected 
layers. 

We use some special treatments to combine the knowledge 
embeddings 𝑿𝑿𝑲𝑲𝑮𝑮, and traffic flow features 𝑿𝑿𝒕𝒕 observed at time 𝒕𝒕, 
as shown in Figure 6. The output is the updated traffic flow 
features fused with topology knowledge of the urban traffic 
networks at time 𝒕𝒕, which we denoted as 𝑿𝑿𝒕𝒕′ , as shown in Equation 
2. And 𝒘𝒘 is linear transformations, 𝒃𝒃 is bias constants. 

𝑋𝑋𝑡𝑡′ = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑡𝑡𝑤𝑤 +  𝑏𝑏)  (2) 

 

Figure 6: The network architecture for combining the 
knowledge graph embeddings and traffic flow as the input of 
a graph convolutional networks. 
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The inputs of the GCN are the updated road section features 
𝑿𝑿𝒕𝒕′  and the adjacency matrix 𝑨𝑨 . The GCN uses graph spectral 
theory to capture the topological relations and features of the 
traffic network and obtain the representation vector of each 
sensor. Here we use STGCN [11] and ASTGCN [12] as the 
backbone for the experiments. 

We use the recurrent neural networks to capture the temporal 
dependency. State 𝒉𝒉𝒕𝒕 represents the output at time 𝒕𝒕. Finally, 𝒉𝒉𝒕𝒕 is 
fed into a fully connected layer to generate the predicted future 
traffic flow 𝒀𝒀�. The objective of the training process is to minimize 
the error between the predicted traffic flow 𝒀𝒀� and real traffic flow 
𝒀𝒀. So the loss function is formulated as:  

𝑅𝑅𝑙𝑙𝑙𝑙𝑙𝑙 = �𝑌𝑌 � −  𝑌𝑌� + 𝛿𝛿𝐿𝐿𝑟𝑟𝑅𝑅𝑟𝑟  (3) 

4 Experiment 

4.1 Dataset Description 
We validate our model on two highway traffic datasets PeMSD4 
and PeMSD8 from California. The datasets are collected by the 
Caltrans Performance Measurement System [17] in real-time 
every 30 seconds. The traffic data are aggregated into every 5-
minute interval from the raw data. The system has more than 
39,000 detectors deployed on the highway in the major 
metropolitan areas in California. Geographic information about 
the sensor stations is recorded in the datasets. And we get the map 
date of California’s roads from the California Open Data1 website. 

PeMSD4. It refers to the traffic data in San Francisco Bay 
Area, containing 3848 sensors on 29 roads. The time span of this 
dataset is from January to February in 2018. We choose data on 
the first 50 days as the training set, and the remains as the test set. 

PeMSD8. It is the traffic data in San Bernardino from July to 
August in 2016, which contains 1979 sensors on 8 roads. The data 
on the first 50 days are used as the training set and the data on the 
last 12 days are the test set. 

4.2 Data Preprocessing 
We remove some redundant sensors to ensure every sensor is on 
the road networks. Finally, there are 3812 sensors in the PeMSD4 
and 1955 sensors in the PeMSD8. The traffic data is aggregated 
every 5 minutes, so each sensor contains 288 data of points per 
day. And the missing values are filled by linear interpolation. 

We build the urban traffic knowledge graphs and traffic flow 
networks for the datasets PeMSD4 and PeMSD8. The knowledge 
graph of PeMSD4 has 3841 entities and 8065 relationships. The 
knowledge graph of PeMSD8 has 1963 entities and 4318 
relationships. The traffic flow network of PeMSD4 has 3812 
nodes and 4213 edges. The traffic flow network of PeMSD8 has 
1955 nodes and 2311 edges. 

 
1 https://data.ca.gov/ 

4.3 Experiment Results 
We evaluate the proposed method on two representative spatial-
temporal graph convolutional networks, STGCN [11] and 
ASTGCN [12], and name their corresponding models of our 
approach as KG-STGCN and KG-ASTGCN, respectively. We 
compare KG-STGCN, KG-ASTGCN, STGCN and ASTGCN on 
PeMSD4 and PeMSD8. Table 1 shows the average results of 
traffic flow prediction performance over the next one hour. It can 
be seen from Table 1 that our KG-STGCN and KG-ASTGCN 
achieve the better performance than STGCN and ASTGCN in 
both two datasets in terms of all evaluation metrics. 

Table1: Average performance comparison of different 
approaches on PeMSD4 and PeMSD8. 

Model 
PeMSD4 PeMSD8 

RMSE MAE RMSE MAE 

STGCN 33.16 22.83 24.78 15.32 

ASTGCN 34.71 23.26 26.86 17.12 

KG-STGCN 32.87 22.65 24.23 14.89 

KG-ASTGCN 34.56 23.02 25.74 16.25 

5 Conclusion 
In this paper, we present an urban traffic knowledge graph-driven 
spatial-temporal graph convolutional networks for traffic flow 
prediction. Our method tries to make full use of the internal 
knowledge of the traffic networks, such as the topology of these 
urban roads and the connectivity of the monitor sensors. Firstly, 
we construct the urban traffic knowledge graph, which can 
represent the topology and connectivity of the roads and monitor 
sensors. Then we can derive the embeddings of the nodes with a 
knowledge graph representation learning model. Secondly, we 
improve the traffic flow networks with the connectivity of the 
roads. Finally, we combine the knowledge graph embeddings and 
traffic flow as the input of a graph convolutional networks. This 
study provides a feasible solution for modeling the topology 
knowledge of the urban traffic networks. However, the urban 
traffic flow is affected by many external factors, like weather and 
social events. In the future, we will take some external influencing 
factors into account to further improve the forecasting accuracy. 
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