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ABSTRACT
Visual question answering (VQA) often requires an understanding
of visual concepts and language semantics, which relies on external
knowledge. Most existing methods exploit pre-trained language
models or/and unstructured text, but the knowledge in these re-
sources are often incomplete and noisy. Some other methods prefer
to use knowledge graphs (KGs) which often have intensive struc-
tured knowledge, but the research is still quite preliminary. In this
paper, we propose LaKo, a knowledge-driven VQAmethod via Late
Knowledge-to-text Injection. To eectively incorporate an external
KG, we transfer triples into textual format and propose a late injec-
tion mechanism for knowledge fusion. Finally we address VQA as
a text generation task with an eective encoder-decoder paradigm,
which achieves state-of-the-art results on OKVQA datasets.

CCS CONCEPTS
•Computingmethodologies→Articial intelligence;Knowl-
edge representation and reasoning; Semantic networks.
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1 INTRODUCTION
The task of Visual Question Answering (VQA) [2] is to answer
natural language questions according to given images. Recently,
some VQAmethods [38, 48, 59] are developed to utilize the external
knowledge for open-world scene understanding (a.k.a. knowledge-
based VQA). According to how to incorporate knowledge, we divide
the current works into two categories.

The rst category is directly exploiting the knowledge in lan-
guage model’s parameters to answer questions [5, 40, 41, 44]. Specif-
ically, inspired by the knowledge-based language model in NLP
eld, some methods [17, 37, 50] trying to inject the common-sense
or factual knowledge as part of the model’s parameter during model
training. However, the knowledge in language model sometimes
is insucient for VQA scenario, and they are likely to fail when
referring to new knowledge that is out of origin training cor-
pus. More importantly, these encoder-based netuning frameworks
with a MLP attached behind the last layer limits the utilization of
knowledge within the model itself [16].

Works from the second category are based on the knowledge
retrieval strategy. We observe that those methods [25, 36, 42, 65]
usually pass the vision-linguistic information through a search en-
gine where the network delaymight become a bottleneck. Others
retrieve relevant corpus from encyclopedia articles, which leads to
lots of irrelevant information and interferes with the model’s
judgment.

To address these challenges, in this paper, we propose LaKo,
a knowledge driven VQA method via Late Knowledge-to-text In-
jection, to eectively incorporate the external information, as shown
in Figure 1. Specically, we develop a retriever-reader VQA archi-
tecture, with a knowledge retriever and a late injection mechanism
between the knowledge and input corpus in reader. First of all, we
construct a common-sense knowledge graph (KG) for VQA, and the
retriever queries this KG according to the vision-language input to
recall the target triples. Specically, the modality is unied via the
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transformation of images to captions and triples to sentences with
Knowledge-to-Text strategy. Special prexes are added to the front
of them as knowledge guidance. Besides, we convert the VQA into
a text generation task via an encoder-decoder paradigm, separate
knowledge from the input corpus during encoding and integrate
them at the stage of answer generation within decoder. We observe
that our method further boost the performance compared to tradi-
tional pipeline and obtain state-of-the-art results. To sum up, the
main contributions are summarized below:

• We propose a new KG retrieval paradigm for VQA together
with a late knowledge injection strategy, which works with-
out relying on annotated ground-truth knowledge.

• We improve and build a large-scale common-sense KG tar-
geted at knowledge-based VQA, proving that high quality
KG benets VQA performance.

• Our method obtains state-of-the-art results on the OKVQA
dataset, and veries that using a high quality KG as the
external knowledge is better than using unstructured text
and pure language model parameters. Our code is available
at https://github.com/hackerchenzhuo/LaKo.

2 RELATEDWORK
2.1 Visual Question Answering (VQA)
Since being proposed by [2], extensive VQA methods [1, 11, 28, 55]
have emerged to focus on applying multi-modal feature fusion
between questions and images for answer decision. Recently, with
the development of the pretraining technique, more systems [32, 33,
35, 53, 63, 64] begin to utilize multi-modal transformer architectures
for the VQA task via vision-language pretraining (VLP) technique.

2.2 Knowledge-based VQA
The knowledge-based VQA [38, 48, 59] requires themodel to acquire
factual or common-sense knowledge outside the image for question
answering. According to the way of knowledge incorporation, we
divide the current works into two categories.
Exploit Knowledge in Language Model. Recent eorts in NLP
elds [5, 40, 41, 44, 60] emphasize the relational world knowledge
contained in huge pre-trained language models (PLMs). Inspired
by these perspectives, many works [46, 56, 62] directly apply the
PLMs into VQA tasks, where the PLM plays a role for question and
image understanding (a.k.a. reader). They hold the view that the
knowledge within the PLMs is sucient to support knowledge-
based multi-modal tasks despite no additional knowledge input,
which makes the VQA become a machine reading comprehension
(MRC) problem. Specically, Salaberria et al. [46] convert an image
into a caption, and then feed it together with question into the
BERT [14] to predict the answer with an added classication head.
Nonetheless, the encoder-based netuning framework with a MLP
attached behind the [CLS] position or pooling layer limits the
utilization of the knowledge within the model itself [16]. Recent
works [56, 62] endeavor to apply prompt for decoder-based model
to solve the VQA problem under the few shot setting, but the max
input length of model itself limits the knowledge utilization.

Some other works inject knowledge during the model training,
letting the common-sense knowledge become part of the reader’s

parameters. For example, [50] employ an auxiliary training objec-
tive that encourages the entity representation to align with the cor-
responding graph embedding in a KG. ConceptBert [17] introduces
a multi-modal representation which learns a joint Concept-Vision-
Language embedding. KRISP [37] exploits the implicit reasoning
of transformer models, integrates symbolic representations from
a knowledge graph (KG), and combines them together through a
relational graph convolutional network (RGCN) [47].

Although black-box models make knowledge an implicit rep-
resentation, they are likely to fail when requiring implicit new
knowledge that is out of the origin knowledge base (KB). In this
study, we not only make full use of the implicit knowledge in the
PLMs, but also selectively carry out additional KG corpus to supple-
ment those ancillary explicit knowledge which may be ambiguous
within the PLMs. Besides, we decouple the knowledge from mod-
els, hoping that the reader could focus on understanding the input
auxiliary corpus. This avoids the interference of model semantic
understanding during the knowledge injection process, and keeps
our model being sensitive to the new knowledge.
Knowledge Retrieval Strategy. It is natural to think of adding
a separate retrieval module (a.k.a. retriever) to recall the required
explicit knowledge as external input of the downstream reader. In
order to take advantage of the information on the Internet, [25,
36, 38, 42] pass the vision-linguistic information through a search
engine (e.g., Google) to retrieve relevant corpus (e.g., sentences from
Wikipedia articles or snippets in searching result) as weak positive
knowledge samples, which are further passed to the reader module
for knowledge incorporation. Within the above methods, Luo et
al. [36] apply the previously retrieved snippets as a KB, and assign
those snippets which contain the answer words as weak-supervised
signals for retriever training. Besides, Wu et al. [61] leverage not
only the structured knowledge, but also the image knowledge (from
Google image search) to revise the answer. However, the network
delay might become a bottleneck for all these policies when take
the search engine as the retriever, and the unstructured knowledge
probably leads to the decrease of knowledge density.

Considering that highly dense knowledge is stored in struc-
tured KG triples, [39, 59, 65] construct context-aware subgraph
from a large scale KG (e.g., ConceptNet [52]) based on entity name
matching or embedding similarity. But all of them preserve the
original graph structure with a GNN-based model followed, which
is deemed insucient to exploit all useful evidence provided by
external knowledge [5]. In this paper, we propose a vision-language
KG retriever together with a Knowledge-to-Text transformation
strategy. They unify the structured knowledge and visual data into
a text modality to exploit the semantic understanding capability of
PLMs, rather than relying on the message passing mechanism in
GNNs. 1

3 METHODOLOGY
A VQA task is to provide an answer 𝑎𝑛𝑠 given an image 𝑣 paired
with a question 𝑞. Following [2], there are a list of (usually ten)
acceptable ground truth answers (𝐺𝑇𝑎𝑛𝑠 ) for each (𝑣 , 𝑞) pair.

1KAT [20], K-LITE [49] and TRiG [15] are the works in the same period as ours so far,
which both take advantage of the knowledge bases and the richness of PLMs.

https://github.com/hackerchenzhuo/LaKo
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Figure 1: The overview model architecture of LaKo. Given a (𝑣, 𝑞) pair, the generated background text and knowledge text
retrieved by vision-language KG retriever are separately send to reader for late knowledge injection. The predicted 𝑎𝑛𝑠 tokens
are decoded in turn.

3.1 Vision-Language KG Retriever
For the retrieval of factual triples from large scale KB, some works
[30, 39] utilize all detected objects in an image as the reference
for knowledge retrieval. However, this brings in a lot of irrelevant
noise and makes the model easy to lose focus, especially when the
number of appeared objects is not small. We observe that the image
caption naturally contains a human-like attention mechanism on
vision. So, instead of directly using vision modality data, our rst
step is to transform the visual content into the textual format. Given
a (𝑣 , 𝑞) pair, we convert the input image 𝑣 into corresponding image
caption 𝐶 (𝑣) with a pre-trained model at rst. Besides, we further
apply optical character recognition (OCR) technique [58] for text
extraction to improve the information integrity, and concatenate
them with 𝐶 (𝑣) to get an image representation 𝑣 with a text form:
𝑣 = C𝑜𝑛𝑐𝑎𝑡 [𝑂 (𝑣);𝐶 (𝑣)], where 𝑂 (.) denotes OCR output. We note
that the pre-trained captioning model and the OCR model could
be regarded as the modules for caption feature extraction. Similar
to ResNet [21] for image feature or BERT [14] for textual feature,
these models generate the simple descriptions toward the image
that are possibly related to ground truth background knowledge
but not exactly equal to.

A KG may contain thousands of facts about a concept, but only
several of them are relevant to the given (𝑣 , 𝑞). Therefore, we reduce
the scope of the KG through the establishment of a stem corpus in
the VQA eld, and make sure that all triples in the KG contain at
least one stem within this corpus (see Section 4.2 for details). Then,
we query the KG to get target triples based on a Knowledge-to-Text
technique and a newly stem-based BM25 [45] algorithm.
Knowledge-to-Text Transformation. Knowledge facts are usu-
ally triples while the questions and answers are textual format.
To realize the unication of three dierent modalities (i.e., vision,
unstructured language, and structured knowledge) data, rstly, we
translate the KG factual triples 𝑡𝑓 into the sentence 𝑠𝑓 . Specially, for

those relations with high frequency, we follow the template-based
method in [5, 22] with pre-dened cloze templates and conduct
manual calibration. For those long-tail or newly added relations,
we apply BERT [14] tokenizer for coarse-grained word segmenta-
tion (e.g., “locatedin” is converted into “located” “##in” ), and then
generate cloze templates automatically after normalization. Despite
many relations are readable for the PLMs even without the above
preprocess, other matching-based retrieval approaches like BM25
will benet greatly from those templates.
Stem-based BM25. The major discrepancy from the original BM25
is that our stem-based one denes the a word stem 2 as the smallest
semantic unit rather than an entire word. Our motivation is to
maximize the knowledge from the limited VQA and KG corpus
via stem merging. Particularly, we remove these extra words with
repeated stems in 𝑣 before concatenating it with stem in 𝑞 rather
than de-duplicate on nal 𝑆𝑞𝑢𝑒𝑟𝑦 , since we want to maintain those
important information emphasized by the 𝑞. Then we get a stem-
based sequence 𝑆𝑞𝑢𝑒𝑟𝑦 with 𝑠1,𝑠2,...,𝑠𝑡 , and calculate the score for
each factual triple sentence 𝑠𝑓 via:

Score(𝑆𝑞𝑢𝑒𝑟𝑦, 𝑠𝑓 ) =
𝑡∑
𝑖=1

𝑤𝑖 ∗ 𝑅
(
𝑠𝑖 , 𝑠𝑓

)
, (1)

where𝑤𝑖 represents the signicance of 𝑠𝑖 :

𝑤𝑖 = 𝐼𝐷𝐹 (𝑠𝑖 ) = log
𝑁 − 𝑛 (𝑠𝑖 ) + 0.5
𝑛 (𝑠𝑖 ) + 0.5

, (2)

where N denotes the total number of 𝑠𝑓 in KG and 𝑛(𝑠𝑖 ) denotes the
number of 𝑠𝑓 containing the stem 𝑠𝑖 . Hyperparameter 0.5 is mainly
for smoothing computation and 𝑅(𝑠𝑖 , 𝑠𝑓 ) measures the semantics
correlation between 𝑠𝑖 and 𝑠𝑓 [45].

2We get word stem via Porter Stemmer algorithm https://tartarus.org/martin/
PorterStemmer

https://tartarus.org/martin/PorterStemmer
https://tartarus.org/martin/PorterStemmer


IJCKG’22, October 27–29, 2022, Virtual Event, China Zhuo Chen, Yufeng Huang, Jiaoyan Chen, Yuxia Geng, Yin Fang, Je Z. Pan, Ningyu Zhang, and Wen Zhang

Finally, 𝑠𝑓 are retrieved according to their stem-based BM25
score. The Top-K 𝑠𝑓 are concatenated to get the 𝑆𝑓 𝑎𝑐𝑡 as exter-
nal knowledge for each (𝑣 , 𝑞) pair, which contributes to the late
knowledge injection within the reader.

3.2 Late Knowledge Injection
Recent VLP-based methods are substantially based on an encoder
architecture with a MLP attached to the [CLS] position or the
pooling layer, which limits the utilization of knowledge within the
pre-trained model [16]. Inspired by previous works [7, 22] which
explore the knowledge within PLMs, we unify all data into textual
to fully exploit the semantic understanding capability of the text-
only PLM. Specically, we apply the encoder-decoder transformer
architecture as the reader, following [12] to convert the knowledge-
based VQA from a classication task into a text generation task.
Dierently, considering that the entities in the KG do not exist in
isolation and a closed loop is formed among triples, we adapt the
Fusion-in-Decoder (FiD) [24] into a new late injection paradigm to
avoid the interference of vision-language information on knowl-
edge self-integrate process. As the self-attention architecture of

Figure 2: The self-attention architecture for late knowledge
injection. The knowledge and background information are
interact in encoder independently and fused in decoder to
collectively predict the answer.

Late Knowledge Injection shown in Figure 2, this policy can achieve
the independent encoding within 𝑆𝑓 𝑎𝑐𝑡 for knowledge aggregation,
and assist on late joint decoding among (𝑞, 𝑣, 𝑆𝑓 𝑎𝑐𝑡 ) for knowledge
searching. Besides, independent encoding also reduces the compu-
tation within the encoder during the self-attention process from
𝑂 ((𝑁 +𝑀)2) to 𝑂 (𝑁 2 +𝑀2) where 𝑁 and𝑀 denote the length of
the knowledge and background input, respectively.

In particular, we rst add special prexes question:, context:
and fact: before the 𝑞, 𝑣 and 𝑆𝑓 𝑎𝑐𝑡 as the knowledge guidance,
which make up two texts with independent semantics:

• Background context: [question: 𝑞, context: 𝑣]
• Knowledge context: [fact: 𝑆𝑓 𝑎𝑐𝑡 ]

Then the encoder independently processes the background and
knowledge context through 𝑁 layers transformer [57]. The output
hidden state from each layer of the encoder form a global repre-
sentation 𝑋 of dimension (𝐿𝑏 + 𝐿𝑘 ) ∗ 𝑑 , where 𝐿𝑘 / 𝐿𝑏 denote the

length of tokenized knowledge / background context, and 𝑑 is the
hidden state dimension of the model. As a regular autoregressive
model, there are self-attention, cross-attention and feed-forward
modules in each layer. For each head in one transformer layer of
the decoder, the attention is dened as follow:

An(𝑸,𝑲 , 𝑽 ) = somax
(
𝑸𝑲𝑇

√
𝑑

)
𝑽 , (3)

where 𝑲 ,𝑸 , 𝑽 denotes matrices of key, query, value for input tokens
[57], respectively, and 𝑸 =𝑾𝑞𝐻 , 𝑲 =𝑾𝑘𝐻 , 𝑽 =𝑾𝑣𝐻 denotes the
output of previous (self) attention layer (𝐻 ∈ R𝑑 ). Specially, the
cross-attention process in each layer of the decoder is the only
part for message exchange between encoder and decoder, where
𝑲 = 𝑾𝑘𝑋 and 𝑽 = 𝑾𝑣𝑋 , which is the key of late knowledge
injection.

Finally, the 𝑎𝑛𝑠 tokens is decoded one by one with the begin of
the start token (e.g., <s>), and stop with the end token (e.g., <\s>).
Meanwhile, the whole encoder-decoder framework is optimized
via minimizing the negative log-likelihood:

L\ = −
|𝑦 |∑
𝑗=1

log 𝑃\
(
𝑦 𝑗 | 𝑦< 𝑗 , 𝑞, 𝑣, 𝑆𝑓 𝑎𝑐𝑡

)
, (4)

where 𝑦 are tokenized from 𝐺𝑇𝑎𝑛𝑠 for a given (𝑣 ,𝑞) pair.

4 EXPERIMENTS
4.1 Dataset
VQA2.0 [2] is a large standard VQA dataset containing about 1.1
million open-ended questions with 204,721 images. Each question
is associated with 10 dierent answers obtained by crowdsourcing.
OKVQA [38] is a recent dataset where the visual content of an
image is not sucient to answer the question. There is not any
exact ground truth common-sense fact triple for question support
and all 𝑎𝑛𝑠 are annotated by volunteers. In addition, all the images
are from COCO 2014 validation set.

We note that other datasets like the FVQA [59] is smaller and
easier than OKVQA since it targets at a reasoning over a given KB
rather than visual reasoning with the open knowledge. Thus we
mainly focus on OKVQA for model validation.

4.2 Knowledge Graph Construction
Following [37], we consider taking the common-sense knowledge
(e.g., what are paper made of) and scientic knowledge (e.g., what
genus are cats) to construct a new KG toward the knowledge-based
VQA. Dierently, we exclude situational knowledge (e.g., where
do cars tend to be located) outside since it may mislead the reader
sometimes when the image scene is not typical (e.g., unseen sce-
narios). Several knowledge sources are incorporated (we manually
add “_” on relations just for easy reading):

• ConceptNet [52] is a semantic network which contains
human common-sense knowledge about the world;

• WebChild [54] contains triples which connect nouns with
adjectives via more ne-grained relations (e.g., “ℎ𝑎𝑠_𝑠ℎ𝑎𝑝𝑒”,
“𝑓 𝑎𝑠𝑡𝑒𝑟”);

• DBpedia [3] includes knowledge extracted from Wikipedia,
which covers many elds and our daily life;
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• hasPart KB [4] collects “ℎ𝑎𝑠_𝑝𝑎𝑟𝑡” relationships between
common objects such as <𝑑𝑜𝑔, ℎ𝑎𝑠_𝑝𝑎𝑟𝑡 , 𝑤ℎ𝑖𝑠𝑘𝑒𝑟𝑠> or sci-
entic ones like <𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠 , ℎ𝑎𝑠_𝑝𝑎𝑟𝑡 , 𝑎𝑡𝑜𝑚𝑠>;

Firstly, we collect triples from the above four knowledge sources
to constitute the original KG (more than 900K triples). In partic-
ular, in WebChild we lter the rst 100K triples according to the
normalized triple condence score. The relations from Dbpedia are
mainly “𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦”, and about 50k “ℎ𝑎𝑠_𝑝𝑎𝑟𝑡” triples are fetched
form hasPart KB. Sevaral relations with a large number but low
potential contribution (e.g., “𝑆𝑦𝑛𝑜𝑛𝑦𝑚”, “𝐴𝑛𝑡𝑜𝑛𝑦𝑚”) are removed.

Next, we collect all of the symbolic entities from the dataset, in-
cluding the words on questions, answers, generated image caption,
andOCR recognition. Based on the distribution of word frequency
(from high to low), we remove common stop words and keep those
that may have impact on knowledge representation (e.g. “𝑐𝑎𝑛”).
The remaining words constitute the VQA corpus with their stem
representation and we only retain those triples in KG whose heads
and tails both contain stems in VQA corpus.

In addition, we dene those relations that occur more than 10,000
times in our KG (e.g. “𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑡𝑜”) as the frequent relations. For
the triples that have identical subjects and objects (e.g., <𝑝𝑒𝑟𝑠𝑜𝑛,
𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑡𝑜 ,ℎ𝑎𝑛𝑑> and <𝑝𝑒𝑟𝑠𝑜𝑛,ℎ𝑎𝑠_𝑝𝑎𝑟𝑡 ,ℎ𝑎𝑛𝑑>), we remove those
triples associated with frequent relations. For example, accord-
ing to our statistics, 13836, 2584, 2533, 2391 triples are deleted,
which separately contain the relation of “𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑡𝑜”, “𝑢𝑠𝑒𝑑_𝑓 𝑜𝑟”,
“𝑎𝑡_𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛”, “𝑖𝑠_𝑎”. Finally, we got a KGwith 300,559 triples, 96191
entities and 2198 relations.

4.3 Metrics
Acc. For those classier-based approaches, we apply the standard
evaluation code3, which calculates the accuracy (Acc) metric rec-
ommended in the VQA challenge [2]:

Acc(𝑎𝑛𝑠) = min(1, #{ℎ𝑢𝑚𝑎𝑛 𝑡ℎ𝑎𝑡 𝑠𝑎𝑖𝑑 𝑡ℎ𝑎𝑡 𝑎𝑛𝑠}
3

) . (5)

EM. For our text generation VQA framework, we use exact match
(EM) when calculate the Acc, where the generated 𝑎𝑛𝑠 is compared
to the ground truth answers (𝐺𝑇𝑎𝑛𝑠 ) after normalization. Never-
theless, the unxed answer length makes the size of answer space
indenite (i.e., even much bigger than the PLM’s vocabulary size)
for the autoregressive model. Likewise, the EM metric cannot make
fair judgment sometimes which may result in some potential an-
swers being left out (e.g., 𝐺𝑇𝑎𝑛𝑠 is “in oven” while 𝑎𝑛𝑠 is “oven”).
Hence, we introduce two new metrics that are EM variants:
Inc. Inclusion-based Acc metric regards the 𝑎𝑛𝑠 as correct when
it includes one answer in 𝐺𝑇𝑎𝑛𝑠 or is included by one answer in
𝐺𝑇𝑎𝑛𝑠 after normalization.
Stem. Stem-based Acc metric makes a small change toward Inc:
making judgment according to whether 𝑎𝑛𝑠 and 𝐺𝑇𝑎𝑛𝑠 have an
intersection on stem (e.g., the stem of “ℎ𝑎𝑝𝑝𝑦” and “ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠” are
both“ℎ𝑎𝑝𝑝𝑖”).

It is noteworthy that all the EM, Inc and Stem metrics will pref-
erentially match the high score answer rst. Meanwhile, the nor-
malization procedure should strictly remove those stop words in
both 𝑎𝑛𝑠 and 𝐺𝑇𝑎𝑛𝑠 to avoid the disturbance.

3https://github.com/GT-Vision-Lab/VQA

4.4 Training Details
During knowledge retrieval, we utilize a SOTA captionmodel VinVL
[64] for generating image descriptions, and we netune its pre-
trained checkpoint with COCO 2014 training set to prevent the
leakage of 𝑣 in test data. The top-10 generated factual sentence 𝑠𝑓
(𝐾 = 10) are adopted to constitute the nal 𝑆𝑓 𝑎𝑐𝑡 . According to our
statistics, the average word number in 𝑆𝑓 𝑎𝑐𝑡 is about 57.

We respectively initialize the reader in LaKo-large/base with
ocial pre-trained T5-large/base parameters. We utilize AdamW
optimizer with initialized learning rate 4e-5 (with warm-up ratio
6%) and the model is trained for 20 epochs with max squence length
130, early stop patience 5 (i.e., the training algorithm waits 5 epochs
before early stop if no progress on the validation set). For the large
version of LaKo, the mini-batch size is set as 8, which is 16 in the
base version.

4.5 Overall Results
Table 1 summarizes the main result on the OKVQA dataset. Our
LaKo follows the large version with late knowledge injection strat-
egy and is re-pretrained using VQA2.0 training data unless oth-
erwise specied. Specically, we compared LaKo with recent LM-
based (BERT [14], RoBERTa [34], GPT-3 [6]) or VLP-based ( Visual-
BERT [31], ViLBERT [35], LXMERT [53], MMF [51]) protocols for
fairness. In addition to these methods, we also leverage some other
strong baselines:

• LXMERT [53]. A SOTA two stream VLP model, where we
extract image region features from a pre-trained Faster R-
CNN [43] as visual input.

• T5 [53]. A recent seq-to-seq LM with encoder-decoder para-
digm. We simply take the question and caption as the input
with special prexes put ahead4.

We nd that many previous works involve explicit knowledge
retrieval from search engines (e.g., “Google Search” and “Google Im-
age”), or store a huge number of unstructured encyclopedia texts as
the background KB in advance (e.g.,“Wikipedia”). However, in realis-
tic application, the network bandwidth may become the bottleneck,
while noise contained in unstructured text may limit the knowledge
scale due to the limitation of max sequence length. Nevertheless,
we compare LaKo with these approaches, observing that the per-
formance of our model still exceeds the SOTA method (PICa-Base
(C+T), with 175B parameters GPT-3 without multi-query ensemble)
and further improves by 3.71%. We also concatenate the 𝑆𝑓 𝑎𝑐𝑡 with
𝑞 as input text to LXMERT, which achieves an improvement of
1.01% on Acc. Most importantly, since our results are based on EM,
the actual acceptable answer accuracy may be higher than our state-
ments. We believe that T5’s generalization on VQA tasks mainly
comes from its large pre-trained Colossal Clean Crawled Corpus
(C4) [53] dataset , and the basic encoder-decoder architecture makes
it exible when migrated to other tasks. Moreover, we get rid of
the dependence on search engines and annotated ground-truth
knowledge, which is easy for other researchers to follow.

We guess that two points are the key issues to the low perfor-
mance of those traditional classier-based approaches:

4Other encoder-decoder models such as BART [29] performs not as good as T5 as we
have tested in VQA eld. Thus we take T5 as the backbone of LaKo.

https://github.com/GT-Vision-Lab/VQA
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Table 1: Performance (%) on the OKVQA test-split. Since we only compared with those LM-based or VLP-based models, we do
not highlight LM on “Knowledge Src”. The full names of these abbreviations are as follows: GS (Google Search),W (Wikipedia),
KG (KnowledgeGraph), GI (Google Image), Enc.Dec.(Encoder-Decoder), TG (TextGeneration), IE (InformationExtraction), CLS
(Classication), Src (source), Acc (Accuracy), C (Caption), T (Tag).

Method Backbone Architecture Knowledge Src Acc

ConceptBert [17] BERT Encoder (CLS) KG 33.66
KRISP [37] VisualBERT Encoder (CLS) W & KG 38.35
MAVEx [61] ViLBERT Encoder (CLS) W & KG & GI 38.70
Caption-DPR + CReader [36] LXMERT Encoder (CLS) GS 36.78
Caption-DPR + EReader [36] RoBERTa Encoder (IE) GS 39.20
KGE Aligning [50] LXMERT Encoder (CLS) KG 39.04
CBM + MMBERT [46] BERT + MMF Encoder (CLS) - 39.20
PICa-Base (C+T) [62] GPT-3 Decoder (TG) GS 43.30
LXMERT [53] - Encoder (CLS) - 36.91
LXMERT [53] + Knowledge - Encoder (CLS) KG 37.92
T5[53] + Prexes - Enc.Dec. (TG) - 42.03
LaKo T5 Enc.Dec. (TG) KG 47.01

(i) In order to mitigate the long-tail problem in answers and
the impact of disjoint answers between training & testing set (e.g.,
the total number of answers in VQA2.0 is 29,140 in our statistics,
with just 15,259 intersections), they have to articially prescribe
the answer candidate set based on occurrence (Occ.) frequency
and therefore determine the output dimension of the last MLP
layer in classier. It is a trade-o between answer coverage and
error rate. This also inevitably aect the upper bound of model
performance: the oracle Acc of VQA2.0 drops to 92.86% with Occ.
9, and OKVQA respectively drops to 72.08% (Occ. 10), 85.38% (Occ.
5), 91.44% (Occ. 3). (ii) The pluggable MLP layer attached behind
the PLM limits the direct utilization of the knowledge within the
model, which is proved by many previous works like [16].

Besides, the phenomenon that recent SOTA works are rarely
based on GNN supports the view that those GNN-based models
may not fully exploit all evidence provided by external knowledge
[5] and the knowledge within the PLM is essential. Since the single-
modal data is much richer compared to limited image-text paired
data, it makes the text-only PLM even stronger than VLP model
on knowledge-based VQA. Furthermore, we hold the review that
our model is not trained on natural long language sequences in
the VQA eld since the answer’s average length is 1.3/1.2 words
in OKVQA/VQA2.0. According to our statistics, the length of the
answers generated by LaKo is 1.23, which supports the idea that
making VQA a simpler generative task is benecial.

4.6 Ablation Study
Eect of Knowledge and Finetuning. In Table 2 we discuss the
impact of factual knowledge and the pretraining on LaKo. “Fine-
tune” refers to re-pretraining LaKo on VQA2.0 before netuning on
OKVQA, which is necessary since the VQA is a relatively unfamiliar
logic for text-only PLMs. We observe that the knowledge retrieval
and the re-pretraining in LaKo-large lead to 2.71% and 2.03% im-
provement, respectively, which is constant in LaKo-base. We own
this to the fact that massive implicit knowledge is contained in
PLMs’ parameter after the pretraining process on Internet corpus,
and LaKo could further exploit those explicit external knowledge

to support more precise answer prediction. Besides, the result on
Inc-based and Stem-based Acc usually can be 5%-7% higher than
the original EM-based one, which shows the potential of our archi-
tecture toward multi-modal knowledge tasks.

Table 2: Ablation study (%) for the eect of knowledge and
netuning. The full names of these abbreviations: w/o (with-
out), KGR (Knowledge Graph Retrieval). “Finetune” refers
to re-pretraining LaKo on VQA2.0 dataset rst.

Method EM Inc Stem

LaKo-large 47.01 53.09 53.97
- w/o {KGR} 44.74 50.90 51.70
- w/o {Finetune} 44.06 49.48 50.25
- w/o {Finetune & KGR} 42.03 47.34 48.11
LaKo-base 42.21 48.17 49.06
- w/o {KGR} 40.27 45.91 46.85
- w/o {Finetune} 39.89 45.05 45.93
- w/o {Finetune & KGR} 38.71 43.80 44.32

Table 3: Result (%) on VQA2.0 test-dev.

Method Acc Inc.

T5 66.38 68.85
ViLBERT [35] 67.90 -
LXMERT 69.15 -
LaKo 68.07 70.47
VinVL [64] 75.95 -

Furthermore, we also make experiments on the standard VQA2.0
dataset as shown in Table 3, where the results reect that the knowl-
edge is also eective for generic VQA (Acc is improved from 66.38%
to 68.07%), and LaKo is comparable to part of VLP models like
ViLBERT [35] and LXMERT [53]. However, it is not easy for us
to surpass those SOTA VLP model without large-scale VLP model
pretraining and ne-grained image feature providing.
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Table 4: The performance (%) discrepancy between late and early injection.

Method LaKo-large LaKo-base

EM Inc. Stem EM Inc. Stem
Early Injection 46.37 52.26 53.29 41.41 47.54 48.22
Late Injection 47.01 (↑ 0.64) 53.09 (↑ 0.83) 53.97 (↑ 0.68) 42.21 (↑ 0.80) 48.17 (↑ 0.63) 49.06 (↑ 0.84)

Caption

Retrieved
Knowledge

Prediction

Question

Image

How did the man extinguish one of 
the candles?

GT Answer

What is the pane of glass in 
the wall called?

• person is capable of blow out candle
• cake is related to with candle
• cake is related to blow candle
• …

Lako: blow
T5: blow torch LXMERT: wave

blow: 1.0 | blow on it: 0.6 | blew it out: 0.6

✓
✓

• pane is part of window.
• glass is related to window pane.
• pillows is located in bedroom.
• …

Lako: window
T5: curtain LXMERT: sun

window: 1.0

✓

There is a man that is looking at a chocolate
cake in the table with a candle in it …

✗ ✗

A very dark bedroom with unmade beds and 
a really big window …

Where might a person dress 
like this?

• suit is related to business
• office is a where person do business
• tie is related to with shirt
• …

Lako: office
T5: business LXMERT: business

office: 1.0 | wed: 0.6 | interview: 0.6 |

✓
✗

Person in business clothes sitting in a chair 
wearing a suit and tie with his hands crossed…

✗

Why is there a carriage in 
front of us?

• horse is located in harness pull carriage
• wagon is used for traveling
• horse is a large animal capable of carry 

person on it back

Lako: travel
T5: tourist LXMERT: annual

travel: 1.0 | tour: 0.6 | trail: 0.6 |

✓
✓ ✗

Horse drawn wagons with passengers pulled 
on path in forest …

✗

Figure 3: We visualize some predictions and their corresponding retrieved facts 𝑠𝑓 . Special, each question is associated with 10

dierent answers, and the score of 𝐺𝑇𝑎𝑛𝑠 is calculated via min(1, #{ℎ𝑢𝑚𝑎𝑛 𝑡ℎ𝑎𝑡 𝑠𝑎𝑖𝑑 𝑡ℎ𝑎𝑡 𝑎𝑛𝑠 }
3 ).

Benets of Late Injection.We studied the impact of late knowl-
edge injection, which separate the background text and knowledge
text on input and focuses on the knowledge aware answer genera-
tion within decoding stage via computing cross-attention between
current generative tokens and these input corpora. According to
the results shown in Table 4, we can see that the late injection pro-
cess has a stable improvement (0.6%∼ 0.9%) on answer prediction,
which suggests that LaKo benets from late knowledge injection
rather than simply puts all these texts together as the input.
Inuence of KG quality. We discuss the inuence of KG quality
on nal performance of LaKo. As the result shown in Table 5, since
the stem limitation of VQA corpus oers eective constraint for
the knowledge range of the model, it mitigates the distraction from
irrelevant information. Meanwhile, we observe that removing part
of triples with redundant frequent relations also has a positive
impact on the model.

Table 5: “Stem Filter”: ltering out triples whose heads or
tails do not contain stems in VQA corpus. “Freq. Rm”: selec-
tively removing those triples which contain frequent rela-
tions (see Sec. 4.2 for details).

KG EM Inc. Stem

Final version 47.01 53.09 53.97
- w/o {Freq. Rm} 46.79 52.66 53.52
- w/o {Stem Filter & Freq. Rm} 46.26 52.17 52.91

4.7 Interpretability
To demonstrate the eectiveness of LaKo and that the knowledge
injection is eective, we visualize some predictions and their cor-
responding retrieved facts 𝑠𝑓 . As illustrated in Figure 3, LXMERT
outputs wrong predictions in all these four cases, and sometimes
outputs totally unrelated answers (e.g., “annual” in the rst case).
T5 outputs reasonable answers in the rst and second cases, but
makes mistakes in the third and fourth cases where there are dis-
tracting information within the caption or the query is ambiguous.
In contrast, some retrieved 𝑠𝑓 in LaKo are relevant to the ground
truth answers (e.g, “oce is where person do business” in the fourth
case), which helps LaKo make correct prediction in those cases.

Figure 4: The training process of weakly supervised dier-
entiable retriever.
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4.8 Feasibility of Dierentiable KG Retriever
The KG retriever plays an important role in our framework. So, is
it feasible to train the retriever for better performance? Following
[23], we leverage the cross attention between the token of the
prediction output and input 𝑆𝑓 𝑎𝑐𝑡 for retriever training, as shown
in Figure 4. In particular, the minimum unit of attention score here
is 𝑠𝑓 . Therefore, no more than 𝐾 (i.e., 10 in our work) scores are
generated for each (𝑣, 𝑞) pair, which are then utilized to training
the retriever as the weak-supervised signals of corresponding 𝑠𝑓 .
We claim the retriever as a pseudo-siamese network [10] with 𝐸𝛾
for encoding 𝑠𝑓 and 𝐸𝜓 for encoding 𝑆𝑞𝑢𝑒𝑟𝑦 , which only share the
model architecture (BERT-base) rather than sharing parameters. It
is optimized through minimizing the 𝐾𝐿-divergence:

LKL =
∑

𝑓 ∈K𝑘𝑔

𝐴𝑞,𝑓

(
log𝐴𝑞,𝑓 − logO(𝑆𝑞𝑢𝑒𝑟𝑦, 𝑓 )

)
, (6)

where K𝑘𝑔 denotes the collection of those (top-k) retrieved textual
triples via Knowledge-to-text transformation and

𝐴𝑞,𝑓 =

exp
(
𝐴𝑡𝑡𝑒𝑛𝑞,𝑓

)
∑

𝑓 ′∈K𝑘𝑔
exp

(
𝐴𝑡𝑡𝑒𝑛𝑞,𝑓 ′

) , (7)

O(𝑆𝑞𝑢𝑒𝑟𝑦, 𝑓 ) =
exp

(
𝐸𝜓 (𝑆𝑞𝑢𝑒𝑟𝑦)𝑇 𝐸𝛾 (𝑓 )

)
∑

𝑓 ′∈K𝑘𝑔
exp

(
𝐸𝜓 (𝑆𝑞𝑢𝑒𝑟𝑦)𝑇 𝐸𝛾 (𝑓 ′)

) . (8)

For the aggregation of 𝐴𝑡𝑡𝑒𝑛𝑞,𝑓 , we apply several strategies:
1) taking the max or average or the top 1/2 attention scores

over the input tokens corresponding to a 𝑠𝑓 ;
2) taking the scores from last half layers or all the layers;
3) adding additional score bias (e.g., 1) to the 𝑠𝑓 which contained

answer stems.
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Figure 5: The results of recall (R) by dierent retrievers. Full
names of these abbreviations: full/half (taking the scores
from all/last half of the layers), max/mean/21mean (taking
themax/average/the top 1/2 scores over the input tokens cor-
responding to a 𝑠𝑓 ), pre ( use themodel netuned at VQA2.0).
Besides, DPR [27] refers to adding 1 additional score bias to
the 𝑠𝑓 which contains the answer stems.

The motivation for choosing the top 1/2 attention scores is to
extract the attention signals from the most valuable part of each
𝑠𝑓 rather than a single token or simple averaging all the tokens;

Specically, all the attention scores are computed toward the rst
output token of the decoder, and the scope of retrieval is within
the TOP-500 facts retrieved via stem-based BM25 (we also strive to
retrieve from the whole KG with 300K triples via faiss engine [26],
only to get a poor result with Recall 23.37% on Top-100 facts). In
order to measure the performance for retrieval, we introduce Inc-
based Recall and dene it as a success recall when the retrieved
knowledge sentence include the answer stem. We train our
retriever with dierent attention scores from both LaKo-large/base.

The Inc-based Recall rate for Top-K facts are shown in Figure
5. As we can see, the Recall rate by the stem-based BM25 is higher
than the trained retrievers when 𝐾 is smaller than 20, but becomes
lower than some trained retrievers as 𝐾 increases. Since we only
utilize the Top-10 𝑠𝑓 for vision-language reading, this result is not
optimistic enough for iterative training on retriever, and we observe
that the VQA Acc simultaneously drops with lower fact Recall rate.
We guess that multiple dierent entities within the caption/question
and the sparse embedding space impact the nal similarity-based
embedding recall, so we simply select the stem-based retrieval
strategy in our primary experiment.

5 DISCUSSION AND FUTUREWORK
• Given a (𝑣 , 𝑞) pair, sometimes there are several correct an-
swers in real world, but the generation-based approach only
gets one answer at a time instead of sorting those poten-
tial ones. It is an interesting direction to consider generating
multiple answers with particular policy, where the trie-based
search [13] strategy could be considered for generative an-
swers’ domain constrain over the candidates.

• KG driven zero-shot problem [8, 9, 18, 19] on VQA also de-
serves a deeper research to further discuss the trade-o be-
tween PLMs and KGs, which requires the model to have
better generalization ability toward the real world scenarios.

• we believe that the dierentiable KG retriever in VQA eld
would be practicable in the future with better knowledge rep-
resentation learning methods and high-quality knowledge
annotations published.

6 CONCLUSION
In this paper, we propose LaKo, a knowledge-driven VQA method
via late knowledge-to-text injection, to eectively incorporate both
the knowledge from the KG and the PLM itself. Specically, we
address the VQA as a text generation task with an eective encoder-
decoder paradigm under vision-language retriever-reader architec-
ture, which achieves state-of-the-art result on standard knowledge-
based VQAdataset OKVQA. Besides, we also pay attention to the KG
construction, observing that KG with higher quality contributes to
better performance of LaKo. This could be an exploration direction
for future works. More importantly, we get rid of the dependence
on annotated ground-truth knowledge and search engines, which
is easy for other researchers to follow.
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