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ABSTRACT 1 INTRODUCTION

Knowledge Graphs are relevant for many applications, but are in-
herently incomplete. Thus, Link Prediction methods have been pro-
posed to infer new triples in order to complete a given Knowledge
Graph. Many Link Prediction methods ignore literals, in spite of the
fact that literals can express important information about entities
not encoded in relations between entities. The existing methods
that do incorporate literal information (e. g., LiteralE) introduce
complex architectures by modifying the model or the loss-function.
In our research paper, we propose a new approach that relies on
graph transformations to transform a graph in such a way that
existing Link Prediction methods can leverage the literal informa-
tion. In particular, we define three transformations and evaluate
them in comparison to state-of-the-art approaches. In most cases,
the additional triples generated by our transformations lead to a
performance increase and even state-of-the-art performance can be
reached when comparing against LiteralE. It turned out that even
a reductionistic transformation is able to archive comparable re-
sults like current, more complex, state-of-the-art approaches which
incorporate literals.

CCS CONCEPTS

+ Theory of computation — Models of computation; - Net-
works — Network algorithms; - Information systems — Graph-
based database models.
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Knowledge Graphs (KGs) are directed labelled multigraphs de-
scribed by a set of triples of the form (subject, relation, object/literal)
encoding structured information about entities. They have become
a relevant way to represent knowledge and are used in various
domains and applications, e.g., in entity disambiguation [21] or
in question answering [3, 20]. As KGs are inherently incomplete,
and are missing facts due to various reasons, there have been many
attempts to develop methods that can predict missing triples, a task
that is called Link Prediction.

Most of the Link Prediction models and benchmark datasets do
not take literal information of attributive triples (i. e., triples with a
literal as object) into account, as contained in many RDF KGs such
as Freebase or DBpedia, and only consider relational triples (i. e.,
triples with an entity as object). The reason might be that literals
add a complexity to the task, requiring more advanced models
which are able to handle both, graph-structured and unstructured
literal data. However, the information encoded in literals can be
very valuable for the task of Link Prediction, as some approaches
have demonstrated [8]. Consider the example of Leo Tolstoy and
Sophia Tolstoya, illustrated in Figure 1; for these two entities, a
relation can be predicted based only on the similar family name
and the shared wedding day. We use this example involving Leo
Tolstoy and Sophia Tolstoya throughout the paper to illustrate our
transformations.

State-of-the-art methods such as LiteralE [8] embed literals into
vectorial representations and use these representations as addi-
tional input to the model or the scoring function. In this research
paper, we propose a different method, consisting of enriching the
neighborhood structure of entity nodes by transforming literal in-
formation into relational triples. This allows to reuse existing Link
Prediction models without modifications in comparison to other
existing methods such as, e. g., LiteralE. Therefore, we motivate and
formally describe three different transformations as set-operations:
Literal2Entity uses the complete literal information without modifi-
cations to create a URI, Datatype2Entity reduces the literal infor-
mation to datatype and language tag and then creates a URI, and
Value2Shingles shingles string literals and enriches the graph by
these shingles transformed to URIs. We apply the transformations
to the most common Link Prediction benchmark datasets, and evalu-
ate models trained with these created datasets. We compare to three
established models as baselines and show that the best graph trans-
formation is a filtered version of Datatype2Entity, which improves
results by 11% compared to DistMult that can not take into account
literals. Furthermore, our approach achieves comparable results
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Figure 1: RDF graph containing literals of type xsd:date and xsd:string with language tag en. One can see that ex:LeoTolstoy and
ex:SophiaTolstaya share the same wedding day and have a similar name.

to LiteralE, which can be considered as state-of-the-art. It turned
out that in some cases even the reductionistic Datatype2Entity
transformation is able to achieve comparable results like current
state-of-the-art approaches which incorporate literals. This raises
the question, whether the complexity of state-of-the-art architec-
tures like LiteralE is needed to allow the usage of literal information
in Link Prediction.

2 RELATED WORK

Link Prediction is a research task that has received considerable
attention by the Semantic Web Community in the last five years.
Whereas rule-based approaches aim at identifying frequent patterns
in the KG, e. g., AMIE proposed by Galarraga et al. [6], statistical
approaches make use of machine learning principles. Moreover,
hybrid approaches try to combine the advantages of both methods,
e.g., Wang et al. [16] make use of logical rules to refine embed-
ding models. The focus of current research is mainly on machine
learning approaches, as they have shown good scalability and gen-
eralizability on large KGs. For example, DistMult, proposed by Yang
et al. [19], uses a multiplicative scoring function for embedding re-
lational triples. ComplEx, proposed by Trouillon et al. [14], modifies
DistMult to work with vectors with complex values, which leads to
an increased performance in modeling asymmetric relationships.

Even though many large KGs such as DBpedia [9], Freebase [1]
and Wikidata [15] contain literals,! relatively little attention has
been devoted so far to methods taking literal information into
account, as they introduce an additional complexity to the Link
Prediction task.

Literals can be multi-modal (e. g., textual, numerical), requiring
models that are able to handle multiple types of data. More recently,
incorporating literals into KG embeddings or Link Prediction mod-
els has become a research topic as several approaches like the ones
by Kristiadiet al. [8] or Xie et al. [18] pointed out the value of literals
for Link Prediction task.

The majority of methods using literals can only handle literals of
a certain datatype, such as textual literals, e. g., textual descriptions
of entities. One example is the approach proposed by Xie et al. [18],
where structure-based and description-based representations are
learned simultaneously in the same vector space by a Link Pre-
diction model, which uses text embeddings if textual features are
available. State-of-the-art methods have been developed with the
purpose to alleviate the restriction to textual data, allowing multi-
modal literal input. Pezeshkpour et al. [12] proposed a method that

! Amount of attributive triples: DBpedia ~40%, Freebase ~57%, Wikidata ~41% [5]

combines existing relational models with separate datatype-specific
neural encoders. For attributive triples, these encoders are used to
obtain a literal representation, allowing all triples to be scored by
relational Link Prediction models. LiteralE, proposed by Kristiadi
et al. [8], is a multi-modal approach, too, that enriches embeddings
with literal feature vectors by a learnable parametrized function.
This function maps an entity embedding and a feature vector to a
new vector of the same dimension as the entity embedding, which
is then used as input for the Link Prediction scoring function. The
approach can be applied to, e. g., DistMult and ComplEx.

The existing methods propose either completely new architec-
tures [18] or modifications of the models [8] or loss functions [17]
and are thus only applicable to certain models and frequently re-
quire a new implementation or re-implementation of core compo-
nents.

Transformations of KGs have been proposed before. E. g., Chen
et al. [4] propose a method for literal canonicalization by replacing
literals with existing entities from the KG or with new entities
typed by using classes from the KG. In their approach, the string
literal "Germany”*"@en would be replaced by its Wikidata entity
Q183. However, the impact of these methods on Link Prediction
has not been investigated so far to the best of our knowledge.

Our approach makes use of transformations, too: it takes unstruc-
tured literal data and represents it in a structured way by enriching
the neighborhood structure of entity nodes in order to be able to use
state-of-the-art Link Prediction models, like DistMult or ComplEx.
Furthermore, we investigate the impact of added triples through-
out transformations of literal data to widely-used Link Prediction
models.

3 GRAPH TRANSFORMATIONS

KGs are directed multigraphs with labeled edges connecting entities
to entities via relational triples and connecting entities to literals
via attributive triples. For simplicity, we only consider RDF graphs,
but our approach is applicable to property graphs as well.

An RDF graph G is a set of triples (s, p,0) € (U U B) x U x
(U U BU L), where U, B and L are pairwise disjoint sets of
URIs, blank nodes and literal values with £ = £L; U L;. L; is the
set of datatyped values, i.e., tuples of the form (v,d) € £* X D
where 2* is the set of strings over the alphabet ¥ and D is a set
of URIs of datatypes. L is the set of language-tagged values, i.e,
tuples of the form (v,]) € £* X 7~ where 7 is a set of language tags.
Without loss of generality, we assume G to adhere to the RDF 1.1.
recommendation, such that G does not contain plain literals. If it
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does, however, one can transform each plain literal into a datatyped
literal by assigning the datatype xsd:string.

Given an RDF graph G that contains relational triples Gg and
attributive triples in Gr. Thus:

Ge ={(s,p,0) | (s,p,0) €G st. 0 € UU B}
Gr ={(s,p.0) | (s,p,0) €G st. 0 € L}

The core idea of our approach consists in the application of cer-
tain transformations to Gi, yielding a transformed set G; . The RDF
graph on which Link Prediction is carried out is then the union
of Gg and G}, that is G’ = Gg U G . In the following, we present
three transformations to create G; . We use one example through-
out the paper to illustrate these transformations, that is the triple
representing the wedding date of Leo Tolstoy, which is given by:
(ex:Leo_Tolstoy, ex:wedding_day, “1862—05—23"""xsd:date) with
the literal ”1862—05—-23"""xsd:date.

Transformation 1 — Literal2Entity (abbreviated as L2E): The
Literal2Entity transformation, as the name suggests, transforms
every literal into an entity, thus creating a URI. This ensures that
entities that share the same literal value with the same datatype
are connected in the resulting graph. In our example, the result
of the transformation is shown in Figure 2, that is, the literal
”1862—05—-23"""xsd:date transformed into the URI representation
ex:1862—05—023_xsd_date.

More formally, the resulting transformed graph G; is defined as
follows:

G ={(s,p,urify(0 ®x)) | (s,p,0) eGAro=(v,x) € L} (1)

The bijective function & concatenates two strings by inserting
an unambiguous separator, and the bijective function urify is used
to transform a character sequence into a valid URL

In terms of complexity, in the worst case, the number of entities
grows by |Gr|. Furthermore, the number of additional relations
equals the number of attributive relations, and, therefore, the num-
ber of created triples is |Gr|.

Transformation 2 — Datatype2Entity (abbreviated as D2E):
This transformation represents the literal’s datatype as an entity
and sets it into relation to the subject entity according to the at-
tributive triple. As a result, all entities connected with a literal of
the same datatype become connected. In our outlined example, for
the literal 1862—05—23"""xsd:date, the URI ex:xsd_date is created.
Figure 3 shows the result of the Datatype2Entity transformation to
our example graph about Leo Tolstoy and Sophia Tolstaya.

To be precise, the Datatype2Entity transformation is defined by:

Gp ={(s,p,urify(x)) | (s,p.0) e GAo=(v,x) € L}  (2)

As the concrete literal value gets lost, the number of additional
entities is | DgUTg|, where Dg denotes the set of language tags and
7g denotes the set of URIs of datatypes in the considered graph G.
Nevertheless, in the worst case, the number of created triples is |Gr |.

Transformation 3 — Value2Shingles (abbreviated as V2S): This
transformation relies on the computation of the k-shingles occur-
ring in any textual literal, introducing a URI for each distinct shingle
and linking the corresponding subject entity to each of these shingle
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entities by the attributive relation. k-shingles are character sub-
sequences of length k which can be used to compute a similarity
score for two different strings. Instead, we connect entities sharing
a certain shingle in the literals. Assuming shingles of size 4, in our
example ex:Tolstoy would be linked to four entities ex:Tols, ex:olst,
ex:lsto, and ex:stoy, corresponding to the 4-shingles of "Tolstoy",
as shown in Figure 4.
Value2Shingles is formally defined as follows:

Gy = {(s,p, urify(w)) | (s,p,0) € GAo=(v,x) € L
A x = xsd:string Aw € w(k,v)}  (3)

Here, w(k, v) is the set of all k-shingles that occur in the literal
value .

The upper bound on the number of additionally created entities
is (m — k) = |G |, where m denotes the maximum length of a string
literal. As for the other transformations, the number of additional
relations equals the number of attributive relations for this trans-
formation. However, for Value2Shingles, the number of triples can
grow linearly with the given amount of literal data: (m — k) * |G|,
where again m denotes the maximum length of a string literal.

4 EXPERIMENTAL SETTINGS

In this section, we describe the datasets typically used for the eval-
uation of Link Prediction and the datasets we have obtained by
enriching these datasets with literals. Further, we describe the Link
Prediction methods that we use in our experiments to explore the
impact of our graph transformations: DistMult, ComplEx, and Lit-
eralE. Finally, we describe the evaluation methodology that makes
use of MRR (Mean Reciprocal Rank) and Hits@k according to Bor-
ders et al. [2].

4.1 Datasets

Our experiments are evaluated on the Link Prediction datasets
FB15k [2], FB15k-237 [13], YAGO3-10 [11], and LitWD48K [7].

FB15k and FB15k-237 are two of the most widely used datasets
for evaluating Link Prediction approaches and are derived from
Freebase. FB15k-237 is a subset of FBI5k, created by removing in-
verse relations. We enriched the subset of the KG intended for
training by attributive triples contained in Freebase. The most fre-
quent relation rdf.freebase.com/ns/type.object.key does not contain
information relevant for our approach, as its literal value can not
be usefully interpreted, therefore we removed it from the dataset.
YAGO3-10, also an established Link Prediction dataset, is a subset
of YAGO3 [10] that only contains entities that occur in at least ten
relations. Even though YAGO3-10 does not contain literals, they
can be derived from YAGO3. We used the literals as published by
Pezeshkpour et al. [12]. In contrast to these datasets, the recently
published LitWD48K dataset is a subset of Wikidata and is explicitly
designed to contain literals for Link Prediction.

For the triples induced by Literal2Entity, some new entities are
connected only to one entity. These entities do not add knowledge
that can be used by our approach, and, therefore, we remove them to
simplify the learning and reduce feature dimensionality and mem-
ory consumption. Furthermore, we found out that Datatype2Entity
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Figure 2: Example: Literal2Entity, applied to the graph depicted in Figure 1. This transformation creates a connection between
ex:LeoTolstoy and ex:SophiaTolstaya by the shared entity {r:1862—-05-23_xsd_date because both share exactly the same wedding

day.

ex:name

P .. — D
ex:Leo_Tolstoy exispouse ex:Sophia_Tolstaya

ex:wedding_day

ex:wedding_day

tr:xsd_date

Figure 3: Datatype2Entity, applied to the graph depicted in Figure 1. The objects tr:@en and tr:xsd_date representing the literal’s
datatypes and language tags are connected to the subjects of the attributive triples through the attributive relation.
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ex:name

ex:Sophia_Tolstaya

ex:name

ex:name

ex:name

ex:name

ex:name

ex:name

ex:Leo_Tolstoy

ex:name

ex:name

Figure 4: Example: Value2Shingles, applied to the graph depicted in Fig. 1. Entities are created by shingling the string literals
with a shingle-size of 4. As the names of ex:LeoTolstoy and ex:SophiaTolstaya are very similar, they share some shingles that are

represented by entities.

creates numerous triples and increases the size of the graph. There-
fore, in addition to the complete graph FB15k-237, we consider
different subsets obtained by filtering the triples. We decided to
build three subsets based on the frequency of each relation, what
has a major impact on the number of triples. The chosen subsets are:
only very frequent relations (> 10k), the second subset contains
only rare ones (< 1k), and the third subset is in-between, filtering
out the most frequent and the most infrequent ones (1k < x < 10k).
For Value2Shingles we consider shingles of size 7 and filter out all
shingles occurring less than 1k times across all datasets. However,
the shingle-size is a parameter we expect to be worth to be tuned
in future investigations. Furthermore, we evaluated the impact of
text normalization, lowercasing and lemmatizing, applied to the
literals before the transformations are carried out. Table 1 shows an
overview of the characteristics of all KGs that we used for training
in our experiments.

Actually, Datatype2Entity creates more triples than Literal2Entity.
Whereas for Literal2Entity numerous triples with entities connected

to only one other entity can be removed, this pattern does not occur
frequently for Datatype2Entity.

4.2 Link Prediction Models

We evaluate our approach on different models: the semantic match-
ing models DistMult and ComplEx, and one of the most prominent
Link Prediction methods to incorporate literals: LiteralE. We used
the implementation published with the LiteralE paper? with the
same hyperparameters as described in the corresponding publica-
tions [8, 14] for DistMult, Complex, LiteralE: learning rate 0.001,
batch size 128, embedding dimensionality 200, optimizer adam, neg-
ative sampling ratio 1, embedding dropout probability 0.2, label
smoothing 0.1. As our transformations introduce additional triples,
the training time increases, even though the maximum number of

Zhttps://github.com/SmartDataAnalytics/LiteralE
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Dataset #entities #relations #triples
FB15k Base 14,951 1,345 483,142
FB15k L2E 86,472 1,875 702,420
FB15k D2E 15,043 2,201 2,896,350
FB15k V2Sgise—7: »1k 22,084 1,425 9,059,600
FB15k-237 Base 14,505 237 272,115
FB15k-237 L2E 86,059 767 491,393
FB15k-237 L2E lc. 86,497 779 495,900
FB15k-237 L2E lemm. 86,684 786 498,330
FB15k-237 D2E 14,633 1,093 2,685,323
FB15k-237 D2E_ 1) 14,633 423 2,640,896
FB15k-237 D2E _1¢k 14,562 1,023 821,602
FB15k-237 D2E 11 y<10k 14,633 423 2,640,896
FB15k-237 V2Sgjse-7: »1k 21,457 317 8,854,676
FB15k-237 V2Sgize-7. 1k lc. 22,195 324 9,766,405
FB15k-237 V2Sie-7: -1 lemm.| 23,020 323 11,418,696
YAGO3-10 Base 123143 37 1,079,040
YAGO3-10 L2E 124,700 43 1,191,101
YAGO3-10 D2E 123,173 43 1,297,765
YAGO3-10 V2Sgje-7. »1k 127,237 38 11,297,860
LitWD48K Base 62,135 258 373857
LitWD48K L2E 96,082 509 608607
LitWD48K D2E 62,147 553 1,008,722
LitWD48K V2Si5e-7. -1k 69,071 371 17,124,453

Table 1: Characteristics in terms of number of entities,
number of relations, and number of triples of the train-
ing datasets derived from FB15k, FB15k-237, YAGO3-10, and
LitWD48k. The datasets denoted with Base are the datasets
without literal data. Literal2Entity is abbreviated as LZ2E,
Datatype2Entity is abbreviated as D2E, and Value2Shingles is
abbreviated as V2S. Moreover, lc. denotes lowercasing, and
lemm. denotes lemmatization.

epochs is set to 100 (200 for LitWD48K) as in the original experi-
ments. For early stopping, the Mean Reciprocal Rank (MRR) on the
validation set is used.

The following evaluation is performed on the defined test sets
of the considered datasets. The enrichment and transformation is
only applied to the training set, since in the considered transduc-
tive learning setting the relevant information is learned as entity
and relation embeddings. Therefore, the setting of predicting links
between entities is the same as for DistMult, Complex or LiteralE.

4.3 Evaluation Method

The models are compared via the filtered mean reciprocal rank
(MRR) metric, as proposed by Bordes et al. [2]. For each triple in the
test set, first the subject and second the object entity is corrupted
by replacing it by all other entities in the graph. Then, the score
for each triple is computed and used to rank the test triple among
all of those triples not already contained in the graph by sorting
ascending. Only triples not contained in the graph are considered
during ranking, to not cause valid triples to increase the rank of the
test triples. As a result, the MRR is the mean of the multiplicative
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inverse of all computed ranks:

1 -1
MRR = m Zrel r 4)

, where I is the set of all computed ranks. In addition, the filtered
Hits@k scores are used for comparison. By using the computed
ranks, the Hits@k are defined as:

Hits@k = [{r e I'|r < k}| (5)

5 RESULTS

We report results comparing the runs of the two methods (DistMult
and ComplEx) with and without transformed literals in order to
investigate the impact of including literal information into these
existing models. We report MRR, Hits@10, Hits@3, and Hits@1
scores for all configurations and runs.

For DistMult and ComplEx, the transformations lead to an up
to 11% increased MRR in comparison to the base models. Espe-
cially in the case where the performance of the baseline is low, we
observe a substantial performance increase reached through our
transformations. For example, the largest improvement yielded by
our transformation-based approach without additional filtering or
normalization was achieved on the LitWD48K dataset using the
DistMult model. In particular, for the LitWD48k dataset, we observe
that our Literal2Entity and Datatype2Entity transformations out-
perform both the baseline and LiteralE. This shows the strength of
our method on datasets that natively include literals. On YAGO3-10,
however, our transformation-based approaches performs worse
than the baseline for some ComplEx models. Interestingly, this is
the case for LiteralE, too. We suspect that the relational triples al-
ready contain the important and reliable information to archive
high scores, and the literals do not add knowledge which is usable
by ComplEx. On FB15k-237, LiteralE achieves the best performance
when DistMult is used. When considering ComplEx, however, our
transformation-based approach outperforms LiteralE.

Overall, our transformation-based approach and LiteralE show
comparable performance, with both outperforming each other in
some settings. All scores are shown in Table 2; it can be appreciated
that all scores (MRR, Hits@10, Hits@3, Hits@1) show the same
trend, corroborating our results. It was unexpected for us that
Datatype2Entity, which does not take the actual value into account,
is able to outperform state-of-the-art LiteralE in some settings.

Datatype2Entity achieves the best scores across all transforma-
tions and, therefore, we investigate the effect of filters. Overall, the
best absolute improvement upon the baseline of 11% in MRR is
achieved by Datatype2Entity with filtering across all transforma-
tions. DistMult, trained with DatatypeZEntity ..ok, reaches an
MRR score of 0.313 which is comparable to LiteralE. The reason for
the increased performance might be that the filters restrict the avail-
able data and therefore might reduce data that does not add useful
information. Overall, the filtering of Datatype2Entity increases the
performance in most cases with respect to the baseline on all scores,
as shown in Table 3.

Furthermore, we investigate the impact of lexical normaliza-
tion operations to conflate some URIs created for literals by apply-
ing lowercasing and lemmatization prior to the graph transforma-
tions. We perform this investigation on the dataset with the lowest
MRR scores, FB15k-237, and report the results for Literal2Entity and
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FB15k FB15k-237 YAGO3-10 LitWD48K
DistMult ComplEx | DistMult ComplEx | DistMult ComplEx | DistMult ComplEx
MRR
Base 0.670 0.693 0.281 0.290 0.479 0.507 0.336 0.315
LiteralE | 0.550 0.750 0.316 0.272 0.466 0.473 0.333 0.268
L2E 0.607 0.658 0.284 0.297 0.471 0.506 0.354 0.339
D2E 0.466 0.534 0.297 0.308 0.500 0.459 0.359 0.338
Vas 0.524 0.533 0.303 0.311 0.409 0.414 0.291 0.283
Hits@10
Base 0.818 0.832 0.437 0.447 0.639 0.659 0.480 0.442
LiteralE | 0.738 0.855 0.485 0.432 0.617 0.610 0.476 0.393
L2E 0.770 0.809 0.444 0.458 0.629 0.657 0.500 0.465
D2E 0.661 0.706 0.455 0.467 0.653 0.649 0.520 0.483
Vas 0.706 0.699 0.462 0.470 0.571 0.597 0.426 0.404
Hits@3
Base 0.721 0.744 0.307 0.320 0.524 0.552 0.360 0.341
LiteralE | 0.616 0.789 0.348 0.299 0.510 0.516 0.354 0.293
L2E 0.659 0.708 0.312 0.326 0.515 0.548 0.378 0.364
D2E 0.525 0.581 0.328 0.336 0.543 0.535 0.384 0.365
Vas 0.578 0.577 0.327 0.342 0.456 0.461 0.310 0.302
Hits@1
Base 0.589 0.615 0.202 0.299 0.396 0.427 0.264 0.248
LiteralE | 0.444 0.690 0.230 0.193 0.385 0.397 0.262 0.203
L2E 0.518 0.575 0.203 0.216 0.388 0.428 0.280 0.271
D2E 0.358 0.443 0.216 0.227 0.420 0.413 0.280 0.263
Vas 0.426 0.445 0.223 0.229 0.322 0.324 0.223 0.222

Blum et al.

Table 2: Scores (MRR, Hits@ 10, Hits @3, Hits@1) obtained for the datasets FB15k, FB15k-237, YAGO3-10, and LitWD48K, without
filter or normalization. Base denotes the dataset containing only the relational triples as originally published. All experiments
were run on our machines with the same settings. One exception are the models trained on LitWD48K which are run for 200

epochs.
DistMult ComplEx | DistMult ComplEx

MRR Hits@10
Base 0.281 0.290 0.437 0.447
LiteralE 0.316 0.272 0.485 0.432
D2E 0.297 0.308 0.455 0.467
D2E. 1k 0.303 0.306 0.468 0.468
D2E_;0x 0310 0.313 0.490 0.479
D2E g y<10k | 0.313 0.311 0.483 0.476

Hits@3 Hits@1
Base 0.307 0.320 0.202 0.299
LiteralE 0.348 0.299 0.230 0.193
D2E 0.328 0.336 0.216 0.227
D2E. 1k 0.334 0.337 0.219 0.223
D2E_ 0k 0.356 0.345 0.232 0.228
D2E g y<10k | 0.346 0.343 0.227 0.227

L2E V2s L2E V2s

MRR Hits@10
no modification | 0.285 0.303 | 0.444 0.462
lowercasing 0.293 0301 | 0.451 0.459
lemmatization 0.280 0.298 | 0.439 0.452

Hits@3 Hits@1
no modification | 0.312  0.327 | 0.203  0.223
lowercasing 0.322 0.327 | 0.212 0.221
lemmatization 0.307 0.325 | 0.200 0.219

Table 4: Scores (MRR, Hits @ 10, Hits @3, Hits@ 1) obtained for
the normalization upfront Literal2Entity and Value2Shingles
on the dataset FB15k-237.

Table 3: Scores (MRR, Hits@ 10, Hits @3, Hits@ 1) obtained
for different Datatype2Entity filters (Datatype2Entity. i,
Datatype2Entity_qqy, Datatype2Entity . ..10x) on the dataset
FB15k-237.

Value2Shingles. Lowercasing slightly improves the results in most
cases. The strongest positive impact of lowercasing is achieved for

the Literal2Entity transformation, leading to a 3% increased MRR. In
contrast, lemmatization in most cases leads to worse performance.
The scores of this evaluation are shown in Table 4.

To analyze the impact of the transformations on Link Prediction
models, we analyzed the specific predictions made by the different
models on the test dataset. Overall, Datatype2Entity_;gx increases
the MRR score in 82.5% (185/224) of all relations in FB15k-237 in
comparison to the base model. Especially for the more frequent
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relations, the model shows a great increase in performance. How-
ever, since the relation-wise MRR shows a high variance, even for
frequent relations, further analysis of the predictions has shown
to be difficult. A comparison of three runs on the same FB15k-237
graph has shown that the intersection of triples ranked in Hits@10
is only around 40% of all triples. The same observation was made
for our proposed transformation datasets.

6 CONCLUSION

In this paper, we presented three graph transformations that encode
literal information in the Knowledge Graphs (KGs) via additional
entities and relations such that they can be leveraged by Link Predic-
tion methods. In comparison to other methods using latent literal
data representations, we apply a transformation directly on the
KG, thus modifying the input, without requiring extensions to a
model. This makes our method usable with state-of-the-art Link
Prediction models. We have examined the impact of our graph
transformation approach with respect to four existing Link Pre-
diction methods: DistMult, ComplEx, LiteralE. The achieved MRR
score shows a performance increase of up to 11% in comparison to
the base model that does not use literal information. Comparing
to LiteralE as state-of-the-art Link Prediction model incorporating
literal information, we show that our method achieves comparable
results without requiring any model extension. We thus provide a
strong new baseline for the inclusion of literal information. As in
some cases, even the reductionistic Datatype2Entity transformation
is able to achieve comparable results like current state-of-the-art
approaches which incorporate literals, it is debatable whether the
complexity of these methods is needed to allow Link Prediction the
usage of literal information.

In our work, only LitWD48K natively includes literals. We have
indeed shown a strong positive impact of exploiting literal infor-
mation in this dataset. Future work should thus invest into the
creation of further datasets with literals to support a robust analy-
sis and evaluation of Link Prediction methods exploiting literals.
Moreover, future work will be devoted to the development of fur-
ther transformations. For string literals, advanced NLP methods,
e. g., entity linking, could be used in new transformations. For nu-
merical datatypes, the discretization of values could be examined.
Furthermore, it would be interesting to take datatype semantics
into account, e. g., literals of type xsd:dateTime can be transformed
into literals of type xsd:date.

Supplemental Material. The code and data to reproduce our ex-
periments is published on GitHub. 3
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