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ABSTRACT
Relation linking is an essential module of knowledge base question
answering systems. To overcome the ambiguity of natural language
and lack of training data, existing relation linking systems em-
ploy varieties of heuristics or aggregations of multiple systems.
However, the current state-of-the-art methods heavily rely on the
surface text and do not achieve optimal results. Since the semantic
parsing structure of the question is a rich source of relation infor-
mation that can strongly promote relation linking performance,
we propose a two-stage Semantic Parsing Relation Linking system:
SPaReL, which leverages semantic parsing using abstract meaning
representation (AMR) to predict relations. The first stage employs
a cross-encoder model that concatenates each candidate relation
with a question semantic parsing slot to reduce the influence of
irrelevant candidate relations on the prediction performance of the
relation linking model. The second stage integrates the sentence
information and the slot processed by the semantic parser, uses a
dual-encoder model to link the remaining high-relevance candidate
relations to predict the relation with the highest score. Our system
achieves state-of-the-art results on four KBQA datasets, LC-QuAD
1.0, LC-QuAD 2.0, QALD-7 and QALD-9.
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1 INTRODUCTION
The knowledge base question answering (KBQA) task aims to pro-
vide correct answers to natural language questions. Using semantic
parsing to complete the question answering task is an important
direction of KBQA [1]. This approach first transforms the corre-
sponding semantic components (including entities, relations, and
various constraints) into formal queries (e.g., SPARQL), and then
executes the query on a knowledge base (KB) to retrieve answers.
Relation linking is a necessary subtask for KBQA. For example,
in Figure 1, to transform the question “How many famous people
are born in Long Island?” into the DBpedia SPARQL query, it is
essential to get the KB relation dbo: birthPlace of the linked entity
dbr: Long Island from the sentence.

How many famous people are born in Long Island?

KB Relation: birth place
SELECT DISTINCT COUNT(?uri) WHERE
{

?uri dbo: birthPlace dbr: Long_Island 
} 

SPARQL

Question

Relation Linking KBQA

Figure 1: An example illustrating the role of relation linking
in KBQA.

Recently, critical tasks of KBQA (such as relation linking) are
mainly focused on surface textual information [2–4], ignoring the
semantic structure information in the question. Semantic parsing
tasks such as AMR have shown to be useful for the KBQA [5]. The
method of semantic parsing is to convert the text into structural
representations that can identify named entities and normalize
relations into PropBank [6] predicates. Therefore, it can alleviate
the lexical gap between different phrases with the same predicate.
In addition, the sentence structure can be extracted, promoting the
task of extracting multiple relations in the question text.
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Some works use the AMR method to promote relation linking
such as SLING [7] and SemReL [8]. However, SLING relies on a spe-
cific target KG (DBpedia) and uses a complex ensemble of different
approaches, making it difficult to port it to a new KG. SemReL uti-
lizes a path-based finding algorithm, which sometimes incorrectly
predicts the relation semantic substructures of the AMR graph.

In this work, we propose a two-stage relation linking algorithm.
First, to match the n-ary arguments in the Propbank framework
with the binary predicates in the KB, we extract the substructure of
the AMR graph as the relation representation and get all candidate
relations corresponding to the linked entities. For an exacted rela-
tion representation, too many irrelevant relations will affect the
retrieval efficiency of the relation linking model in the candidate
relation space, so we use a cross-encoder to remove irrelevant can-
didate relations. Further, for relation disambiguation, we introduce
question information to assist the model in selection. The source
code is available at GitHub1.

The main contributions of this work are as follows:
• Improving a rule-based approach to extract substructures
containing relation information in the semantic parsing
graph generated from an AMR parser[9].

• Adopting a cross-encoder model, which reduces the irrele-
vant candidate relations. So that the simple, knowledge graph
agnostic neural model can also achieve good performance
without large training data.

• Utilizing dual-encoder with different parameters to extract
question features and relation features respectively, and fuse
the information of two parts to predict the final relation.

• Experimental evaluations using four datasets based on DB-
pedia [10] and Wikidata [11]. We show that the method
outperforms existing systems on all datasets.

2 RELATEDWORK
In the KBQA, relation linking has been shown to be the main error
propagation subtask and needs significant improvement. SIBKB [12]
uses PATTY [13] as the underlying knowledge source, and performs
relation linking based on the semantic similarity of the words with
DBpedia predicates. EERL [14] proposes using question entities
to support relation linking tasks on DBpedia, it logically connects
properties to the target entities, and uses this property list to expand
the set of relation candidates which can be used for the construction
of SPARQL queries in the QA pipeline. The ReMatch [15] models KB
relations with their underlying parts of speech, and then uses the
additional attributes obtained from Wordnet [16] and Dependency
parsing features to enhance the model. They all generate candidates
by running a textual similarity-based method over dictionaries,
which is constructed by analyzing the natural language patterns
contained in massive text corpora through frequent item mining or
crowdsourcing.

Falcon [3] and Falcon 2.0 [17] uses a series of steps to jointly
link entities and relations in a question, they enhance entity and
relation linking through cross-KG entity and relation alignment
and basic principles of English morphology. EARL [18] is also a
method for joint entity and relation linking, which adopts approxi-
mate generalized traveling salesman problem (GTSP) solvers and
1https://github.com/OBriennnnn/SPaReL

machine learning methods. KB-Pearl [4] is another system that
performs joint entity and relation linking with Wikidata. It uses
OpenIE to create a semantic graph of text and maps both entities
and relations to a given KB.

SLING [7] leverages semantic parsing methods to understand
the question and integrates some approaches (e.g. distantly super-
vised learning, statistical mapping, word embedding) to achieve
state-of-the-art performance on various DBpedia datasets. SemReL
[8] employs a simple transformer-based neural model for relation
linking that leverages the AMR semantic parse of a sentence.

3 METHODS
3.1 Overview
We propose SPaReL which uses the semantic substructure of a
sentence to process relevant relations retrieved from the underlying
KB. Figure 2 depicts the overall architecture of our relation linking
system.

Firstly, a natural language question is transformed into the AMR
graph through a AMR parser [9], which also completes the entity
linking task. Then we use the linked entity to search all correspond-
ing candidate relations in the KB. According to some rules, the
slot is extracted from the shortest path in the AMR graph from
the entity node to the target node. The cross-encoder obtains the
ranking score of the relations from the combined input of slots
and candidate relations. In addition, a dictionary is generated from
all slots in the training set, each unique slot is set as a key, and
the value contains relations that have appeared in the training set
corresponding to the slot. This dictionary can compensate for some
candidate relations that the cross-encoder may ignore. The new
candidate relation set is the union of these two parts. We use a
pseudo-siamese network based on a dual-encoder to predict the
gold KB relation. The model integrates question information to
select the final result from the new relation set.

Our SPaReL system framework is shown in Figure 2. The left
side shows the extraction of the slot from the AMR graph, and
the combination of the slot with the question and the relations
respectively, as the input of the two models. The blue words on
the right represent candidate relations, where the gold relation is
marked with black bold font.

3.2 Relation Slot Prediction
Semantic representations are abstracted from lexical forms and can
provide more consistent structural clues than surface text. AMRs
are directed acyclic graphs that capture who is doing what to whom
by using PropBank frames to represent the semantic structure of a
sentence. Nodes in the graph are concepts, and edges are labeled
with relations between these concepts.

A path-based method is proposed in [19] to obtain the semantic
substructure of AMR graphs, it finds the shortest path between the
linked entity node and the amr-unknown node, and then deletes
the irrelevant nodes, compresses the path, and extracts the slot.
However, for a short path with a single predicate, after filtering
out some irrelevant nodes, there is only one predicate node left in
the slot. Propbank predicates are not equivalent to relations, the
representation of relations requires the predicate node to combine
the information of the neighbor nodes and the edges in the graph. In
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[CLS] [AMR] bear :ARG1 
person :location state [TEXT] 
How many famous people are 
born in Long Island? [SEP]

[CLS] [AMR]bear :ARG1 person :location state [REL] builder [SEP]
…

[CLS] [AMR]bear :ARG1 person :location state [REL] birth place [SEP]
…

Figure 2: The architecture of the SPaReL system.
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Figure 3: AMR graph of a general question.

addition, the results of AMR parsing are not always correct, namely,
the underlying relations are not always represented in the form of
predicates. To better represent relation information in AMR graphs,
we propose two new rules:

• For a single predicate in the shortest path of the AMR graph,
we consider the amr-unknown node as a special placeholder,
which also has an implicit relation meaning and can be in-
cluded in the slot. After AMR parsing, the predicate node
needs to fuse edge information and neighbor node informa-
tion to enrich the meaning of the relation.

alma-mater

amr-unknown person

name alma-mater

"James" "Still" person also

name

"Tom" "Maniatis"

Question: What is 
the alma mater of 
the James Still 
which is also the 
alma mater of Tom 
Maniatis?

: domian : poss

: name :mod

: poss :mod

: name

Slot: alma-mater :domain amr-unknown :poss person

Slot: alma-mater :mod person :poss person

Entity: “James_Still"

Entity: “Tom_Maniatis"

Figure 4: AMR graph of a multiple entity question.

• For a path that does not contain any predicates, we select a
node with two non-core role edges as the center for slot gen-
eration. If there are multiple nodes in a path that satisfy this
condition, the center of the relation semantic substructure
corresponding to the entity should be the node closest to it.

Figure 3 shows an AMR graph of the general sentence “How
many famous people are born in Long Island?” This is the simplest
and most regular case. A special node, amr-unknown, is used to
represent a placeholder for the answer to the question. AMR can
mark named entity nodes, which are linked to KB entities by BLINK
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entity linker [20]. We remove the sense label from the above slot
representations (such as bear-02 becomes bear) and convert them
into the linearized representations through a top-down manner.
As above, we get the entity’s slot: (bear|ARG1|person|location|state),
which corresponds to the KB relations: dbo: birthPlace.

Figure 4 shows an AMR graph of the sentence "What is the
alma mater of the James Still which is also the alma mater of Tom
Maniatis?" with multiple entities. This sentence is a good illus-
tration of our rules. The slot generated by the first rule is: (alma-
mater|domain|amr-unknown|poss|person). This slot contains the amr-
unknown node because there are only two valid nodes between
the entity James_Still and the target node amr-unknown (the name
node is used as the aggregate representation of the entity nodes
and is not included). It can be seen that the edge from the alma-
mater node to the amr-unknown node is :domain, which implies
the attribute information contained in the amr-unknown node.

The slot generated by the second rule is: (alma-mater|mod|person|
poss|person). There is no predicate node (such as bear-02 in Figure
3) in the path: person→alma-mater→person→alma-mater→amr-
unknown. According to our rules, the nodes can be used as the
center node is alma-mater (in the first layer), person (in the second
layer), alma-mater(in the third layer). We select the node alma-
mater (in the third layer) closest to the entity as the center node
to generate the slot. For nodes with the same content in the path
(both are alma-mater), we choose the node in the third layer which
is closer to the entity Tom_Maniatis.

Finally, we get the slots: (alma-mater|domain|amr-unknown|poss|
person) and (alma-mater|mod|person| poss|person), they both corre-
spond to the KB relations: dbo: almaMater. Such representations will
be concatenated with relations and sentences respectively, which
are used as the input of different models.

Through processing, our rules fix slot length to 5 words, which
facilitates the construction of a training set for cross-encoder learn-
ing.

3.3 Candidate Relation Reduction
For each linked entity in the AMR graph, we use a SPARQL query
to find all relations associated with it. However, the number of
candidate relations obtained in this way will be very large, some ir-
regular relations have an adverse effect on the training of the model.
Therefore, we use a cross-encoder to reduce irrelevant candidate
relations.

We assume that slots containing PropBank predicates can repre-
sent relations, highly relevant candidate relations can be predicted
by introducing deep cross attention between the slot and the rela-
tions. Our cross-encoder is similar to the ones described by [21].
The slot-relation representation 𝜏𝑠,𝑟 is made up of word-pieces of
the slot and relation. The input to our cross-encoder model is:

[CLS] [AMR] slot [REL] relation [SEP]
where [AMR] and [REL] are special tokens to separate slot and

relation representation. Formally, we use 𝒗𝑠,𝑟 to denote our slot-
relation embedding:

𝒗𝑠,𝑟 = red
(
𝑇𝑐𝑟𝑜𝑠𝑠

(
𝜏𝑠,𝑟

) )
(1)

where 𝜏𝑠,𝑟 is the input representation of slot and relation, 𝑇𝑐𝑟𝑜𝑠𝑠
is a BERT transformer model. Following the explanation in [22],

we choose 𝑟𝑒𝑑 (.) to to get the first output in the last layer (corre-
sponding to the special token [CLS]). To score relation candidates,
a feed-forward layer W is applied to the embedding 𝒗𝑠,𝑟 :

𝑆cross (𝑠, 𝑟 ) = 𝒗𝑠,𝑟𝑾 (2)

BERT

[CLS] [AMR]bear :ARG1 person :location state [REL] builder [SEP]
[CLS] [AMR]bear :ARG1 person :location state [REL] residence [SEP]

… …
[CLS] [AMR]bear :ARG1 person :location state [REL] birth place [SEP]

… …
[CLS] [AMR]bear :ARG1 person :location state [REL] hometown [SEP]
[CLS] [AMR]bear :ARG1 person :location state [REL] death place [SEP]

… …
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Figure 5: The overall structure of the cross-encoder ranking
model.

Figure 5 shows the overall structure of the cross-encoder rank-
ing model. Slot-relation pairs are tokenized using BERT tokenizer
without any additional pre-processing. The slot obtained from the
AMR graph of the question: “How many famous people are born in
Long Island?” and the candidate relations obtained from the KB
entity Long Island are combined, then input to the cross-encoder
model to get a reduced candidate relation set.

Training. We select all slots and their corresponding gold rela-
tions as the positive instance. For the generation of the negative
instance of slot-relation pairs, we choose 𝒏 non-gold relations ran-
domly rather than all negative relations, in this work we choose
𝒏 = 5 for LC-QuAD 1.0 and LC-QuAD 2.0, and 𝒏 = 15 for QALD-7
and QALD-9. The scale of the QALD dataset is small, so it is neces-
sary to set a larger 𝒏. We find that too many negative slot-relation
pairs 𝒏 ≥ 20 cause data imbalance , which is not conducive to the
training of the model. The label of the positive instance is 1, and
the negative is 0, the training objective is to minimize the MSE loss
between the predicted vector output and the true label.

Inference. As shown in Figure 5, in inference we connect the slot
with all the relations of the linked entity, then the model ranks the
scores for each combination, and finally selects the top 𝒌 relations
with the highest score. The choice of the hyperparameter 𝒌 is
introduced in Section 4.2.

3.4 Dual-encoder Relation Linking Model
In this section, we propose a pseudo-siamese neural network that
does not share parameters for relation linking tasks. We use the
pre-trained BERT model to initialize two encoder parameters, and
the inputs of the two encoders are:

[CLS] [AMR] slot [TEXT] question [SEP]
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Figure 6: The architecture of the relation linking model.

[CLS] relation [SEP]

where [TEXT] is a new special token to separate slot and question
representation. The question embedding and relation embedding
are denoted by:

𝑣𝑞 = red
(
𝑇question

(
𝜏𝑞
) )

(3)

𝒗𝑟 = red (𝑇relation (𝜏𝑟 )) (4)

where 𝜏𝑞 and 𝜏𝑟 are the input representation of slot-question se-
quence and relation sequence. For the question encoder, similar
to in Section 3.3, 𝑇𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 and 𝑇𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 are the BERT transformer
model. 𝑟𝑒𝑑 (.) also get the first output in the last layer.

After obtaining the final vector representation of the two en-
coders, we concatenate the two vectors together. For each relation
that aggregates sentence information, we use MLP to calculate the
relation similarity score. Finally, the relation with the highest score
is selected as the prediction. Due to the difference in the input of
question and relation, the parameters between the two encoders
are not shared. The structure of the model is shown in Figure 6.

Slot-relation Dictionary Generation. To supplement the cross-
encoder model ignoring some high-correlation relations, we use
the slots of the training set and their corresponding gold relations
to generate a dictionary, with the slots as keys and the relations as
values. As shown in Figure 6, for slot “bear :ARG1 person :location
state” there are two relations: birth place and location. We merge
these two relations into a reduced candidate relation set obtained
by the cross-encoder.

Training. For a question 𝑞 with vector representation 𝒗𝑞 and a
relation 𝑟 with vector representation 𝒗𝑟 , the predicted score is:

𝑆 (𝑞, 𝑟 ) = 𝑀𝐿𝑃
(
𝒗𝑞, 𝒗𝑟

)
(5)

The training objective is to minimize cross-entropy loss between
the one-hot gold truth and the vector of predicted scores.

Inference. For an input question, the corresponding set of candi-
date relations consists of two parts: the reduced candidate relations
with high relevance provided by the cross-encoder and the relations
generated by the slot-relation dictionary.We feed each question and
its corresponding candidate relation set to two encoders separately,
which output the final highest relation prediction score derived by
the MLP.

4 EVALUATION
4.1 Datasets and Experiment Setup

Datasets. Our model is evaluated on four datasets based on two
KBs, DBpedia and Wikidata. Each question in these datasets comes
with a SPARQL query, which allows us to extract entities and cor-
responding gold relations. The four datasets are: QALD-7 [23],
QALD-9 [24], LC-QuAD 1.0 [25], LC-QuAD 2.0 [26]. The QALD-7
dataset is based on Wikidata with 215 train questions and 50 test
questions in natural language. The QALD-9 dataset is based on
DBpedia with 413 train questions and 150 test questions in natural
language. The LC-QuAD 1.0 dataset is based on DBpedia with 4000
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Table 1: HR for each dataset with different k values

QALD-7 QALD-9 LC-QuAD 1.0 LC-QuAD 2.0

k=5 0.52 0.48 0.86 0.88
k=10 0.63 0.55 0.94 0.94
k=15 0.78 0.63 0.96 0.96
k=20 0.92 0.72 0.97 0.97

train questions and 1000 test questions. The LC-QuAD 2.0 dataset is
based on Wikidata with 24k train questions and 6046 test questions.

Experiment Setup. We use the BERT tokenizer to tokenize rela-
tion names without any additional preprocessing. Moreover, special
tokens [AMR], [REL], [TEXT], and AMR relation labels are added to
the BERT vocabulary. We use pre-trained BERT to encode different
input sequences, and the parameters in each encoder are differ-
ent.For the tokenizer of the cross-encoder, the length of the input
sequence is limited to 15 tokens since only slots and relations are
involved, and for the dual-encoder, the length of question encoder
is set to 50 tokens, and the length of relation encoder is set to 15
tokens.

For the cross-encoder, the batch size is set to be 50, the initial
learning rate is tried {5e-4, 2e-4, 5e-5, 2e-5}, and the learning rate
decays every 5 epochs. The multiplicative factor gamma for updat-
ing the learning rate is set to be 0.2. For dual-encoders, the learning
rate is updated similarly.

4.2 Cross-encoder Model Performance
Cross-encoder can capture the rich interactions between slots and
relations well. We employ Hit Ratio (HR) as the evaluation metric,
we consider a hit if the gold relation is among the top k candidate
relations predicted, and HR is the proportion of the total number
of hits in the total number of questions. For each gold relation,
we fetch a list of top candidates with a k value of 5, 10, 15, or
20, where k is the number of the generated candidates. Table 1
presents our experimental results. A higher HR means selecting too
many candidate relations, which may lead to lower performance of
relation linking. For different datasets, we balance the relationship
between HR and the number of candidate relations input into the
relation linking model to achieve optimal results.

For dataset QALD-7, we choose k=20, for dataset QALD-9, we
choose k=15, for dataset LC-QuAD 1.0 and LC-QuAD 2.0, we choose
k=10. The method of k value selection is: for LC-QuAD 1.0 and
LC-QuAD 2.0, the scale of the training set is large, and the model
can be well trained, so k does not need to be large. However, for
QALD-7 and QALD-9, the scale of the training sets is small, to ap-
propriately expand the likelihood that the gold relation is included
in the reduced candidate relations, the k value is set to be larger.

4.3 Results and Analysis
We choose precision, recall, and F1 score to evaluate the results.
The settings of P, R, and F1 refer to [7], for each question:

𝑃 =
| 𝑔𝑜𝑙𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 | ∩ | 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 |

| 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 | (6)

Table 2: Relation linking results on QALD-7, QALD-9, and
LC-QuAD 1.0

QALD-7 QALD-9 LC-QuAD 1.0
P R F1 P R F1 P R F1

SIBKB 0.29 0.31 0.30 - - - 0.13 0.15 0.14
ReMatch 0.31 0.34 0.33 - - - 0.15 0.17 0.16
EARL 0.27 0.28 0.27 - - - 0.17 0.21 0.18
Falcon 0.58 0.61 0.59 0.23 0.23 0.23 0.42 0.44 0.43
SLING 0.57 0.76 0.65 0.39 0.50 0.44 0.41 0.55 0.47
SemReL - - - 0.46 0.44 0.45 0.51 0.51 0.51
SPaReL 0.70 0.67 0.68 0.53 0.45 0.49 0.68 0.58 0.62

𝑅 =
| 𝑔𝑜𝑙𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 | ∩ | 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 |

| 𝑔𝑜𝑙𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 | (7)

𝐹1 =
2 × 𝑃 × 𝑅

𝑃 + 𝑅
(8)

and the final result is the average of P, R, F1 for all the questions.
Tables 2 and 3 compare SPaReL with existing approaches. In

Table 2, We compare our work with other methods, all of them
support relation linking over DBpedia [10]. SIBKB [12] and Rematch
[15] build a dictionary by analyzing the natural language patterns
contained in massive text corpora through frequent item mining
or crowdsourcing and then generate candidates through textual
similarity-based method over this dictionary. EARL [18] leverages
the connection density of KG for ranking, Falcon [3] enhances
relation linking through basic principles of English morphology.
Both SLING [7] and SemReL [8] leverage AMR for preprocessing,
train a Transformer-based model. Falcon and SLING differ from
the results of QALD-9 in their paper because they are evaluated
using both training and test sets, and we re-evaluate them only for
the test set. SPaReL outperforms all baselines in all benchmarks
with respect to the F1 score. Most of the current relation linking
evaluation datasets are based on the KB of DBpedia, so most of the
current methods are evaluated on this KB.

LC-QuAD 2.0 builds SPARQL queries on Wikidata [11], Falcon
2.0 [17] uses several fundamental principles of English morphology
to obtain auxiliary information, and exploits an alignment model
for linking, SemReL [8] is also evaluated on this dataset.

From Table 2, it can be seen that the precision of the model has
been significantly improved, but on the datasets QALD-7 andQALD-
9, the recall of the model does not surpass the previous model. The
reason for this phenomenon is that to evaluate the performance of
the model for different data sets, we only use their own training sets
to the model, instead of introducing a large amount of other data
to assist model training like SLING and SemReL. Therefore, for the
QALD-7 and QALD-9 datasets with less training data, the model
does not learn many corresponding slot representations for some
gold relations, so the inference ability is not significantly improved.
This problem is solved when the scale of training data is getting
larger. For example, LC-QuAD 1.0 in Table 2 and LC-QuAD 2.0 in
Table 3, the recall surpasses other models. It shows that the model
has improved the judgment ability of some gold relations.

We analyze some errors in the experiments for future research.
Since the shortest paths are all from the entity node to the amr-
unknown node, the correctness of the node position and entity
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Table 3: Relation linking results on LC-QuAD 2.0.

LC-QuAD 2.0
P R F1

Falcon 2.0 0.44 0.37 0.40
SemReL 0.59 0.38 0.46
SPaReL 0.69 0.46 0.55

Table 4: Ablation study on LC-QuAD 1.0 and QALD-9 test set

LC-QuAD 1.0 QALD-9

SPaReL 0.62 0.49
w/o slot-relation dictionary relations 0.59 0.37
w/o AMR slot 0.57 0.44
w/o candidate relations reduction 0.45 0.41

linking results are both crucial. In addition, datasets have some
problems. For example, in LC-QuAD 1.0, some candidate relations
are overlapping (such as death place and place of death, home town
and hometown), which is also difficult for humans to distinguish
these relations. The coexistence of singular and plural formats of
some candidate relations (such as region and regions) also affects
the model’s inference ability. In LC-QUAD 2.0, we notice that some
of the questions do not match their SPARQL queries. Wikidata has
evolved significantly since 2019, the time LC-QuAD 2.0 was created.

4.4 Ablation Study
Table 4 shows the F1 scores of ablation experiments on the LC-
QuAD 1.0 and QALD-9 test sets. Slots can improve the model’s
attention to relations, reducing low-relevance candidate relations
and supplementing slot-relation dictionary relations both have an
impact on the performance of the system.

W/o slot-relation dictionary relations. The inference result of the
cross-encoder model does not include all the gold relations, so
we establish a slot-relation dictionary to complement candidate
relations. However, if the scale of the training set is large enough,
the improvement effect of this method is not obvious (such as LC-
QuAD 1.0).

W/o AMR slot. For the relation linking model based on dual-
encoder, we do not concatenate AMR slot and question when in-
putting, but only input a single question to test the model’s infer-
ence ability from the surface text. The performance has declined,
because the sentence may contain multiple relations. It is difficult
for the model to determine what relation the sentence implies with-
out an AMR slot.

W/o candidate relations reduction. If candidate relation filtering
is not performed, for the LC-QUAD 1.0 test set, 48.36 candidate
relations are corresponding to each entity on average, and 95.44
for the QALD-9 test set. Too many candidate relations will lead to
the sparse distribution of the gold relation, which has a negative
impact on the training and prediction of the model. After filtering
by cross-encoder, 10.56 candidate relations are corresponding to

each entity on average for the LC-QuAD 1.0 test set and 15.21 for
the QALD-9 test set.

4.5 Relation Linking on Single-Relation and
Multi-Relation Questions

Our slot extraction method can get a more comprehensive relation
representation. To illustrate the improvement in relation reasoning
in both single-relation questions and multi-relation questions, we
construct two small-scale test sets for evaluation using the test
dataset of LC-QuAD 1.0. Each single-relation sentence contains
only one relation, and the length of the sentence is less than 8 words,
each multi-relation question contains more than two relations (can
be the same or different), and the length of the question is more
than 12 words. The single-relation test set has 70 questions, and
the multi-relation test set has 100 questions.

For single-relation questions, as described in Section 3.2, we use a
slot containing an amr-unknown node to concatenate the sentences
as input to the question encoder. In SemReL, the slot generation
method simply concatenates the predicate with the question.

For multiple-relation questions, in SemReL, they follow the
method in [19], adding all the potential predicate nodes and corre-
sponding edges in the path to generate the slot, which is concate-
nated with questions for relation linking. They use special tokens
[SP] and [EP] to mark the words corresponding to each predicate
and use an AMR parser [27] for word-to-predicate alignment. In our
work, we use improved rules to obtain more related information.

Table 5 lists two examples of the input for the two methods. For
the single-relation question, after processing, there is only one node:
develop in the path. SemReL only adds this single node, but we con-
sider that the information attached to its neighbor nodes and edges
is beneficial for inference as well. Adding neighbors and edges can
provide richer information. For the multiple-relation question, the
entity dbr: C++ corresponds to the relation programming language.
The shortest path from the entity to the amr-unknown node is:
language→software→amr-unknown, which is no predicate node
in the path (possibly due to AMR parsing errors). In SemReL, the
corresponding slot cannot be generated because of no predicate.
In our work, according to the description in Section 3.2, the center
of the slot is formed by selecting the node language that satisfies
the condition and is the closest to the entity node, we generate a
regular slot through its neighbor nodes and corresponding edges.
As can be seen, our method can still extract a slot that expresses
relation information.

Incorrect AMR graphs lead to wrong alignment results, to pre-
vent error propagation, we remove the special token used for align-
ment in the input. Moreover, the accuracy of alignment is difficult
to evaluate on the KBQA dataset. Our method fixes the slot length
to 5 words, which builds the premise for reducing candidate rela-
tions through the cross-encoder and constructing a slot-relation
dictionary.

The results are shown in Table 6, our method outperforms the
state-of-the-art model SemReL in F1 scores on both small datasets.
For single-relation questions, the slot emphasizes the components
containing relation information; for multiple-relation questions,
the slot assists in abstracting and selecting relation information.
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Table 5: Input of single-relation questions and multi-relation questions

single-relation question multiple-relation question

SemReL developer: [CLS] [AMR] develop [TEXT] what has
been [SP] developed [EP] by John Fanning? [SEP]

programming language: There is no predicate in the shortest
path, no slot is generated
operating system: [CLS] [AMR] operate :instrument system
:poss company [TEXT] What is the total number of software
whose programming language is C++ and [SP] operating [EP]
system is Microsoft Windows? [SEP]

SPaReL
developer: [CLS] [AMR] develop :ARG0 person
:ARG1 amr-unknown [TEXT] what has been
developed by John Fanning? [SEP]

programming language: [CLS] [AMR] language :ARG3 program
:mod software [TEXT] What is the total number of software
whose programming language is C++ and operating system
is Microsoft Windows? [SEP]
operating system: [CLS] [AMR] operate :instrument system
:poss company [TEXT] What is the total number of software
whose programming language is C++ and operating system
is Microsoft Windows? [SEP]

Table 6: Relation linking results on single-relation questions
and multiple-relation questions

single-relation questions multiple-relation questions

SemReL 0.68 0.38
SPaReL 0.72 0.50

5 CONCLUSIONS AND FUTUREWORK
In this paper, we propose the SPaReL model that exploits the se-
mantic structure of sentences. Compared to existing systems, the
rules we adopt can better express relation information, and our
regular semantic information is beneficial to the irrelevant relation
filter and relation linking. Experiments show that our method can
adapt to multiple KGs and achieves state-of-the-art performance.

We also notice that when the training data scale is small, due to
lack of training, the cross-encoder is difficult in inferring all high-
relevance relations. In the future, we will explore new methods to
obtain this kind of few-shot relations. Furthermore, our model still
relies on the rule-based AMR graph slot-finding algorithm, and its
identification is not always correct for some complex AMR graphs.
We will explore learning algorithms to identify slots from the graph
in the future.
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