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ABSTRACT
Data analytics including machine learning analytics is essential
to extract insights from production data in modern industries. Vi-
sual analytics is essential for data analytics for e.g., presenting
the data to provide an instinctive perception in exploratory data
analysis, facilitating the presentation of data analysis results and
the subsequent discussion on that. Visual analytics should allow a
transparent common ground for discussion between experts in data
analysis projects, given the multidisciplinary background of these
experts. However, a standarised and formalised way of describing
the knowledge and practice of visualisation is still lacking in the
industry, which hamstrings the transparency and reusability of
visual analytics. A visualisation ontology which models the nature
and procedure of visualisation is well-suited to provide such stan-
dardisation. Currently a few studies discuss partially the modelling
of visualisation, but insufficiently study the procedure of visuali-
sation tasks, which is important for transparency and reusability
especially in an industrial scenario. To this end, we present our
ongoing work of development of the visualisation ontology in in-
dustrial scenarios at Bosch. We also demonstrate its benefits with
case studies and knowledge graph based on our ontology.

1 INTRODUCTION
Data analytics including machine learning analytics [13, 14] aim
to extract knowledge and insights from noisy, structured and un-
structured data [3, 23, 33], and have been widely applied in in-
dustrial applications to reduce down-times, improve quality mon-
itoring [15, 18, 38, 39], and robot positioning [2, 9]. Common data
analytics include visual analytics, statistical analytics, machine
learning analytics [20, 21, 37], etc. Among which, Visual analytics
is arguably the most frequent activities because it is essential for
various activities of data analytics [24, 30, 31] for e.g., presenting
the data to provide an instinctive perception in exploratory data
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analysis [34, 40], facilitating the presentation of data analysis [28]
results and subsequent discussion on that [16, 17].

Data analytics in the industry is of great importance [26, 27, 29],
as the graphical presentation of the data helps to reach a common
understanding and facilitates discussions among the stakehold-
ers [6, 7, 32]. However, a standarised and formalised way of de-
scribing the knowledge [19, 41] and practice of visualisation is still
lacking in the industry [36, 37], which hamstrings the transparency
and reusability of visual analytics [22, 25]. A visualisation ontology
whichmodels nature and procedure of visualisation is well-suited to
provide such standardisation, which, is formal explicit specifications
of shared conceptualisations [4]. Furthermore, a visualisation ontol-
ogy can provide many advantages: unambiguous definition of con-
cepts that capture the domain knowledge of visual analytics, stan-
dardised description of visualisation procedures and modularised
and resuable components [18, 35], construction of visual knowledge
graph (KG) that represent executable visual analytical pipelines, etc.

Currently there are a few studies that discuss partially the mod-
elling of visualisation, but they insufficiently depict the important
elements in visual analytics and are less adequate in describing the
practical procedure of visual analytics, which is important in the in-
dustrial scenarios for transparency, modularisation and reusability
of visual analytical pipeline. For instance, computer science ontol-
ogy [1, 12] contains general knowledge about visualisation, but the
concepts of specific visualisation process is not involved. Statistics
ontology [5, 11] enumerates the various visualisation methods, but
insufficiently studies procedures of visualisation approaches.

To this end, we present our ongoing work of development of
a visualisation ontology VisuOnto, with the industrial scenario of
manufacturing data analytics at Bosch. We also demonstrate case
studies and automated KG construction and verification of VisuOnto.
In summary, our contributions are:
• We give detailed domain analysis of visual analytics (Section 3),
including its common activities and procedure, from which we
derive the three requirements for a visualisation ontology.
• We present a visualisation ontology (Section 4), VisuOnto, includ-
ing the important classes, Data, VisualMethod, VisualTask, and Con-
straints that specify valid visual analytical pipeline.
• We demonstrate the evaluation and case studies of the VisuOnto
(Section 5). We discuss two case studies that show VisuOnto can
describe visual analytics in a transparent with visual KGs that
represent the visual analytical pipeline in a modularised and
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Figure 1: Example of machine learning visualisation and its proce-
dure: 1○create canvas layout; 2○draw subplot; 3○add description

reusable fashion. We further present the evaluation with compe-
tency questions and verification of the visual KGs.

2 ONTOLOGY DEVELOPMENT PROCESS
Webroadly follow themethodology ofOntologyDevelopment 101 [10].
We use Protege as ontology editor, and OWL 2 EL as the modelling
language for its expressivity and polynomial time of query answer-
ing [8]. The modelling process can be divided into three steps:

Step 1: Domain Analysis. We discussed common visualisation ac-
tivities with domain users (Bosch experts such as welding experts,
data scientists) and read literature. We gather common and impor-
tant terms in visualisation activities, including data, plot types, pur-
poses, procedure, etc. In addition, we also studied frameworks and
scripts of implementing visualisation with popular programming
languages (Python which is the most popular among the users).

Step 2: Ontology Modelling. Based on the terms collected from
Step 1, the concepts are formalised as classes. We classified them
into categories to built the taxonomy of these classes, e.g., Can-
vasTask ⊑ AtomicTask, VisualPipeline ⊑ VisualTask. We formalise the
relations between the classes as object properties, e.g., VisualPipeline
hasStartTask CanvasTask.

Step 3: Evaluation and Case Study.We present several use cases
that demonstrate the usage of VisuOnto and its evaluation in user
study. Further more, we discuss the competence questions, and
automated construction and verification of visual KGs.
3 DOMAIN ANALYSIS: VISUAL ANALYTICS
Visualisation Activities.We introduce the visual analytics that
the ontology aims to cover. To limit the scope in this short paper
and to have concrete discussion, we introduce the methodologies
and concepts inspired by real-world cases of visual analytics in the
industrial scenario of data analytics in manufacturing at Bosch. In
particular, we study the following aspects of visualisation practice:
Data. The common data type include: vector, 2D matrix, and higher
dimensional tensors. These data can be with or without interde-
pendencies, e.g., a vector with temporal dependency becomes a
sequence; a vector without temporal dependency is a single feature
vector; a 2D matrix with spacial dependency becomes a image.
Plot Types. We study the visualisation types of line plot, scatter
plot, bar chart, pie chart, histogram, heat map, etc. Although these
methods can be applied to a broad range of data, there exist some
heuristics that specify more suited methods for some types of data.
E.g., line plot is more suited for data sequence; bar chart and pie
chart are more suited for single feature vector with a limited length,
because if the length is large, these two charts become too crowed.
Complexity Levels. We divide the visualisation plots into four com-
plexity levels: (1) simple figure, which uses a single plot type to

Figure 2: Schematic illustration of VisuOnto

visualise one data; (2) multiple figure, which repeatedly uses one
plot type multiple times to visualise multiple data, e.g., Fig.1 dis-
plays two multiple figure; (3) complex figure, which uses multiple
plot types to visualise multiple data (4)multiple layout figure, which
contains multiple subplots that are of the previous three types, e.g.,
Fig.1 is a multiple layout figure with two multiple figures.

Purposes.We discuss two types purposes of visual analytics here: (1)
exploratory data analysis to gain insights from the data, by dataset
characterisation via visualisation of features, distribution, change,
etc., outlier detection; (2) machine learning visualisation to provide
an intuitive overview of the machine learning analysis results as
a common ground for interpreting the machine learning models,
e.g., Fig.1 visualises the prediction results of the quality indicator
(Q-Value) in line plot and scatter plot.
Visualisation Procedure. In the aforementioned visualisation ac-
tivities, the procedure to produce a figure can be largely divided
into three steps: (1) create the canvas layout of the figure by giving
the number and arrangement of subplots; (2) in each subplot, vi-
sualise the data by specifying the plot type (line plot, scatter plot,
etc.) and plot properties (colour, line width, marker size, etc.); (3)
add descriptions to each subplots, such as labels, legend, etc.
Three Aspects of Requirements.We now derive the following
aspects of requirements for the visualisation ontology:

R1. Knowledge Capture: The ontology should be able to cover
the aforementioned visualisation activities. Specifically, it should
contain classes that describe the data, plot types, and their taxon-
omy. These classes should be able to support description of visual
analytics of different complexity levels and purposes.

R2. Procedure: The ontology should allow description of the
visualisation procedure. In particular, it should provide the schema
for visual KGs that represent the procedure by a visual pipeline.

R3. Modularisation and Reusability: The ontology should enable
description of modularised and resuable components of visual ana-
lytics. Specifically, the constructed visual KGs should allow mod-
ularised description of visual pipelines and they should be easily
reused by modifying some components.

4 THE VISUAL ONTOLOGY
The VisuOnto (Fig.2) has 504 axioms, which define 30 classes, 11
object properties, and 142 datatype properties. It can be expressed
in EL description logics. It contains three important upper classes:
Data, VisualMethod VisualTask, which comprise a framework for de-
scribing visual analytics domain and serve as schema for visual KGs.
Besides, VisuOnto contains a set of formal constrains that can be
used for verifying correctness of visual KGs. Correctness means e.g.,
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Figure 3: The visual KG in (a) for drawing Fig.1a can be easily reused for drawing Fig.1b by slightly modifying (a) to (b). These two can be
further combined for drawing a multiple layout figure by modifying the entity CanvasTask 1○ and the DescriptionTask 3○, and inserting the
entities marked by 4○ in (b) in the position marked by 2○ in (a).

visual analytical pipeline represented by visual KGs have necessary
input data and correct methods for these data.
Data. The class Data is the upper class of all data classes in VisuOnto.
It has three important sub-classes: DataStruture, DataSemantics, and
Plot. The sub-classes of DataStruture describe the dimension of the
data, including Vector that models 1D array, Matrix that models 2D
matrix, and Tensor that models higher dimensional tensors. The
sub-classes of DataSemantics describe the meaning of the data, e.g.,
SingleFeature models the feature that are independent, Sequence mod-
els the vectors that have order (temporal dependency, MLResults
represent the data that are the analysis results of machine learning.
We model the different plot types as sub-classes of Plot, these are
usually the outputs of visual tasks, such as LinePlot, ScatterPlot, etc.
VisualMethod. The class VisualMethod is the upper class of all
classes of visualisation methods in VisuOnto. Its sub-classes include
e.g., LineplotMethod, ScatterplotMethod. Each method clearly has object
properties connect to allowed data, e.g., ∃AllowedData− .Lineplot-
Method ⊑ Array. Each sub-class of VisualMethod represents a pro-
gramming script of a visualisation function or module (several lines
of code). The data type properties of the VisualMethod are the ar-
guments of the script. E.g., LineplotMethod has data type properties
such as hasLineWidth, hasLineColour, hasLineStyle.
VisualTask. The class VisualTask refers to the invoking of a visu-
alisation method for solving a visualisation task. Each entity of
VisualTask has inputs and is connected to entities of Data via hasIn-
put. It also has method and is connected to an entity of VisualMethod
via hasMethod. VisualTask has two sub-classes: (1) AtomicTask that
represent indecomposable visualisation tasks, such as PlotTask that
creates the visualisation of a single data, CanvasTask that specifies
the canvas layout, and DescriptionTask that adds the labels, legends
(see Visualisation Activities in Section 3); (2) VisualPipeline, consist-
ing of a series of AtomicTasks, can create a figure with the canvas,
drawings, and descriptions: An entity of VisualPipeline connected
to an entity of CanvasTask via hasStartTask, which is connected to
PlotTasks via hasNextTask, which is then connected to DescriptionTask
via hasNextTask (Examples see Fig.3, Fig.4b).
Constraints. We formalise a set of constraints that should ensure
the correctness of visual analytical pipelines represented by the
visual KG. The correctness includes two aspects: (C1) the method
and data should match. For example, the following axiom con-
straints any tasks which invoke plot method to have input data:
ax1 : ∃hasMethod.PlotMethod ⊑ ∃hasInput;(C2) the visual analytical

pipelines should have the correct structure. For example, the fol-
lowing axiom constraints any plot method to have allowed data:
ax2 : PlotMethod ⊑ ∃allowedData.

5 EVALUATION
We evaluate our approach with an industrial scenario of visual
analytics for automated welding at Bosch, which is an impactful
welding process accounting for production of over 50 million cars
globally every year. The sample dataset is collected from a factory in
Germany, containing 22 welding machines and 53.2 million records.

5.1 Case Study with KGs
We present two examples for the two types of purposes of visual
analytics introduced in Section 3.
Machine Learning Visualisation. The prediction results of Q-
Values (an quality indicator of automated welding) in machine
learning analysis are visualised in line plots in Fig. 1a, where the
black lines indicate the target values to predict, the blue and green
lines indicate the estimated values of the training and test sets,
respectively. The line plots provide an intuitive way of understand-
ing the prediction performance, as the perfect estimation should
overlap with the target completely. Fig. 1b presents the scatter plots
of the same results, with the x-axis as the target values and y-axis
as the estimated values. The scatter plots provide another intuitive
way of understanding the results, as the perfect estimation will lie
in a straight line from bottom left corner to top right corner.

The generation of such figures can be described with the visual
pipelines represented by the visual KGs in Fig. 3. The visual KG
has an entity of VisualPipeline, with an entity of CanvasTask as the
start task, four entities of PlotTask after it, and an entity of Descrip-
tionTask as the last task. The plot tasks have input data, and all
tasks are linked to entities of VisualMethod It can be seen that the
visual knowledge provide a very transparent way of describing the
procedure of visualisation (R2). The domain knowledge including
various concepts (data, plot types) and activity of machine learning
visualisation is well depicted by the ontology and KG (R1). Besides,
Fig.1a can be easily reused for drawing Fig.1b by slightly modifying
(a) to (b), and these two can be further combined for drawing a
multiple layout figure by merging the entities of the two visual KGs,
showing good modularisation and reusability (R3).
Exploratory Data Analysis. Here we present the example of
inspecting dataset characteristics. The automated welding process
produces a large volume of data. It is therefore very desired for
welding experts to gain a quick overview of the data collected
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Figure 4: Example of overviewing dataset statistics in heat maps (a) and its visual KG (b). The colour map is a smooth continuum through
yellow (large values indicating high data amount and complexity), purple (middle), and blue (small values with de-emphasised text).

from all welding machines, to learn the data amount, complexity
produced by each machine in an intuitive way, and to narrow down
the search realm for potential problematic welding machine (e.g.,
with excessive complexity due to anomalous maintenance).

Fig. 4a shows an overview of the general information of datasets
in heat maps: The bottom row “num_data” summarises the number
of data instances (each data instance is generated by one welding
operation), providing an overview of the data amount; The row
“num_prog” indicates the number of welding programs (a welding
program prescribes the way of performing the welding operation),
providing an overview of the data complexity since more welding
programs indicate more complex dynamics in the data; The row
“num_cap” and “num_capdress” provide further information of data
complexity from the angle of maintenance, as cap change and cap
dress are both maintenance operation of the welding process. We
can see WM𝐴 - WM𝐹 have higher data complexity due to more cap
changes, and WM𝐷 - WM𝐹 have higher data amount.

The generation of such heat maps can be described with a visual
pipeline, represented by a visual KG in Fig. 4b. Similar to Fig.1, the
visual pipeline has entities of CanvasTask, PlotTask and DescriptionTask,
where the four entities of PlotTask have the same visual method,
HeatmapMethod. This KG also provides a transparent way of proce-
dure description (R2), captures the knowledge of heat map visual
analytics. The tasks are well-described with four components that
reuse the same method (R3).

Table 1: Competence Questions
# Competence Question
C1 How many input data entities exist for the given visual task?
C2 What is the visual method chosen for visualisation?
C3 What type of plot does the pipeline generate?
C4 What data structure is allowed for line plot method?
C5 How many subplots exist in the visual pipeline?
C6 What colour is used for the give plot task?
C7 What is the first task in the visual pipeline?
C8 How many plot tasks exist in the visual pipeline?

5.2 Competency Questions
We evaluated VisuOnto with a set of competency questions (CQ),
which are derived after discussion between welding experts, data

scientists, and semantic experts. These CQs (examples given in
Table 1) should reflect the coverage of the domain knowledge (R1)
from three aspects: (I) actual/allowed input/output data or method
for a visual task (C1 - C4), (II) datatype property for a visual task (C5
- C6), and (III) the workflow of a visual pipeline (C7 - C8). All of the
CQs can be answered using SPARQL queries over KGs constructed
with the VisuOnto as the schema.
5.3 Visual Analytical Pipeline Verification
The formally and explicitly expressed constraints in the VisuOnto
(Section 4) enable the automatic verification of correctness of visual
analytical pipelines. To do so, we rely on an OWL 2 reasoner and
a set of SPARQL queries. The notion of correctness of the visual
analytical represented by the visual KG is fulfilled, if and only if all
the constraints explicitly contained within VisuOnto are satisfied. In
particular, each constraint in VisuOnto is verified by a query, which
is evaluated to false if the constraint is fulfilled. When we run all
these queries over a visual KG that represent a visual analytical
pipeline, if one of these queries is evaluated to be true, the visual
analytical pipeline is verified to be incorrect. We take two queries
𝑄ax1 and𝑄ax2 as examples, which correspond to the two constraint
axioms ax1 and ax2, to verify whether the visualisation pipeline
fulfils the two constraints:
𝑄ax1 ← VisualTask(𝑥) ∧ hasMethod(𝑥,𝑦) ∧ PlotMethod(𝑦) ∧ ¬∃𝑧.hasInput(𝑥, 𝑧)
𝑄ax2 ← PlotMethod(𝑥) ∧ ¬∃𝑦.allowedData(𝑥,𝑦)

6 CONCLUSION
In this paper we present our ongoing work of visualisation ontology
VisuOnto, which encodes the knowledge and procedure of visual
analytics in an ontology and knowledge graphs. Our evaluation
with industrial use cases demonstrate the benefits of VisuOnto and
it suffices the three requirements derived in the domain analysis.
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