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ABSTRACT

Named entity extraction is a crucial task to support the population
of Knowledge Bases (KBs) from documents written in natural lan-
guage. However, in many application domains, these documents
must be collected and processed incrementally to update the KB as
more data are ingested. In some cases, quality concerns may even re-
quire human validation mechanisms along the process. While very
recent work in the NLP community has discussed the importance of
evaluating and benchmarking continuous entity extraction, it has
proposed methods and datasets that avoid Named Entity Linking
(NEL) as a component of the extraction process. In this paper, we
advocate for batch-based incremental entity extraction methods
that can exploit NEL with a background KB, detect mentions of
entities that are not present in the KB yet (NIL mentions), and up-
date the KB with the novel entities. Based on this assumption, we
present a methodology to evaluate NEL-based incremental entity
extraction, which can be applied to a “static” dataset for evaluating
NEL into a dataset for evaluating incremental entity extraction. We
apply this methodology to an existing benchmark for evaluating
NEL algorithms, and evaluate an incremental extraction pipeline
that orchestrates different strong state-of-the-art and baseline al-
gorithms for the tasks involved in the extraction process, namely,
NEL, NIL prediction, and NIL clustering. In presenting our experi-
ments, we demonstrate the increased difficulty of the information
extraction task in incremental settings and discuss the strengths of
the available solutions as well as open challenges.
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1 INTRODUCTION

Updating a Knowledge Base (KB) - typically a Knowledge Graph -
with information collected from textual documents is considered in
several KB population methodologies to overcome the well-known
population bottleneck [34]. Entity extraction is a key building block
of these methodologies that can be supported at a large extent with
Background KBs (BG-KB). In particular, Named Entity Linking (NEL)
is the task of linking mentions of entities found in a document to
their identifiers in a BG-KB. NEL is usually applied after entity
mentions are identified in the text and eventually classified using
some Named Entity Recognition (NER). While encyclopedic infor-
mation sources, like Wikipedia and DBpedia, list and describe large
collections of entities, they are far from being complete. Entities
mentioned in a document that are not represented in the KB (NIL
entities) must be identified as novel ones. Identifying mentions of
novel entities is a sub-task of the process, often referred to as NIL
prediction. After clustering NIL entity mentions that refer to the
same real-world entity, a task usually referred to as NIL clustering,
the KB can be updated with the new entities. NIL clustering is a task
that is much related to (cross-document) coreference resolution [20]
since both cluster together mentions referring the same real-world
entities.

Combining NER, NEL, NIL prediction and NIL clustering algo-
rithms makes it possible to execute pipelines for end-to-end entity
extraction with a BG-KB, eventually extending the BG-KB with
the novel entities found in the documents. Several methodologies,
benchmark datasets, and tools have been proposed and used to
evaluate solutions for entity extraction, in particular with a focus
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on the NER task or on the combination of NEL, NIL prediction and
NIL clustering [10, 13, 21, 27, 38].

However, the datasets proposed to evaluate NEL, NIL prediction,
and NIL clustering assume that the entity extraction task is executed
once on a given input corpus. Only recently it has been stressed that
in many application scenarios entity extraction must be applied to
a collection of documents that are ingested over time [4, 20], in a
dynamic way. We refer to these scenarios as incremental entity ex-
traction. In these scenarios, entity extraction must be performed on
documents that are ingested incrementally in such a way that also
the KB is extended incrementally exploiting batches of documents
as they are ingested. In [20], authors propose a similar task, where
entity coreference is applied to streams of documents, then they
propose a benchmark for the evaluation, and discuss challenges
that emerge in this continuous scenario. They explicitly contrast
this approach to entity extraction to approaches that use NEL and
BG-KBs. While we share the same arguments for motivating the
need of entity extraction solutions that operate incrementally, we
maintain that similar solutions can and should also be developed
by exploiting BG-KBs, which provide valuable support, and thus
consider the NEL, NIL prediction, and NIL clustering tasks in an
incremental scenario. Human in the loop (HITL) in entity extrac-
tion is particularly relevant for ethical concerns when information
from automatic systems is used to support decisions in sensitive
application domains, such as in the juridical context [4]. In incre-
mental entity extraction, we therefore assume that documents are
ingested and processed in batches, in such a way that HITL may
be incorporated at intermediate processing steps, may improve the
quality of the extended KB.

Incremental entity extraction with BG-KB can be considered, as
a whole, an incremental version of NEL (I-NEL), where NIL predic-
tion and NIL clustering are follow-up tasks. As the process unfolds,
we can consider the KB as consisting of two (virtual) parts: BG-KB,
which may contain millions of entities since the beginning, and
its extension, named NEW-KB. NEW-KB is empty at the beginning
and updated incrementally as a new batch is processed: an exam-
ple of incremental update is shown in figure 1. A key feature of
I-NEL is that when processing the i-th batch, the NEL is expected
to link not only to entities stored in the BG-KG, but also to entities
stored in NEW-KB after processing previous batches. Thus, the
NEL algorithm must use limited information when trying to link
to entities stored in the NEW-KB after previous batches. The infor-
mation about new entities may gradually increase, but errors can
also propagate across batches. An example of the task is shown in
figure 1, where the entity John Smith is not present in the BG-KB,
however it is recognized as a new entity and added to the NEW-KB
at the end of the batch processing; in the following batches, we
expect that the mention of John Smith is correctly linked to the -
now known - entity in the NEW-KB.

In addition to the definition of the incremental entity extrac-
tion task with a BG-KB, the main contributions of this paper are
the following resources: 1) a methodology to evaluate the task by
adapting benchmark datasets for entity extraction to the incre-
mental (batch-based) scenario, 2) an incremental version of the
WikilinksNED Unseen-Mentions (WNUM) [27], 3) a pipeline that
combines strong baselines for each subtask, i.e., NEL, NIL predic-
tion and NIL clustering, and 4) an evaluation of the pipeline and a
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Figure 1: Documents are processed in batches through time;
at each iteration, novel entities are added into the NEW-
KB and can be linked in following steps. Between each
step, a human validator can correct pipeline mistakes, split-
ting/merging clusters and fixing links.

discussion of the challenges introduced by the incremental scenario.
The incremental version of WNUM, the solution to generate it, and
the baseline pipeline are resources that are documented and made
publicly available?.

The paper is organized as follows: we first discuss related work
in section 2, then in section 3 we introduce a baseline pipeline
to help the reader understand the task that is evaluated with the
proposed methodology. Afterwards, we discuss the methodology
to create the dataset (Section 4) and the result of its application
to WNUM. Finally we discuss the evaluation on the incremental
datasets (Section 5) and how the error propagates through the
pipeline.

2 STATE OF THE ART

The conceptualization of the KB population with a BG-KG as a task
composed of four sub-tasks is not novel and can be tracked back
to the the TAC? (Text Analysis Conference), with its knowledge
base population track (TAC-KBP), and to several other works [12];
but our contribution focus on an incremental version of this task,
shortened as I-NEL. The importance of applying entity extraction
solutions in an incremental setting has been recently stressed in
prior works [20], which proposes methods without NEL. In this
paper, we focus on presenting an evaluation methodology for the
I-NEL task as well as an end-to-end baselines, which consider error
propagation. In the present section, we first review recent work
related to each subtask, to identify the best candidate components
for the proposed pipelines; then we discuss limitations of current
evaluation methodologies.

2.1 Named Entity Linking

The task of NEL consist in linking the correct entity e, taken from
an arbitrary KB, to a given mention m. Recent works rely on neural
networks of any kind, providing the most various strategies [29].
This work relies on the bi-encoder architecture [11], which uses
BERT self-attention to map the mention vector into the significance

!https://github.com/rpo19/Incremental-Entity-Extraction
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space. This architecture, despite its simplicity, provides impressive
results in both the candidate generation [35] and the candidate
ranking step. It encodes separately mentions (in their context) and
entities (given a short textual description) in the same space. For this
reason, it is conceptually easy to obtain a (non-human) description
of the entity, providing a sufficient number of examples, as seen in
section 3.

In the last years, new and more complex models, always using
self-attention mechanisms, obtained better performance on bench-
mark datasets [3, 6], at the price of introducing new problems such
as output interpretability in evolving domains. Those models, in
fact, rely only on meaningful entity names, without the need of a
description. However, ‘“titles may not be enough”[3]: names could
be ambiguous in some cases, especially for entities that were not
well-represented in either the train set or in the transformer pre-
training. Other systems [19] instead ignore the problem of new
entities, providing a simpler approach that embeds entities with a
masked language model, which is constant in time.

The works presented above are only the first step in the pipeline,
since it is followed by two additional components: the NIL predictor
and the NIL cluster. Those components were often presented in
previous works as future improvements, without a true experimen-
tation. However, their presence can improve the whole pipeline,
for both results checking and adding new entities into the KB.

Named Entity Linking systems are evaluated usually using micro-
accuracy, calculating the fraction of mentions linked correctly, or
macro-accuracy, averaging on the entities, thus calculating the
fraction of entities linked correctly [9]. [35] is evaluated using micro-
accuracy and also micro-recall@k (micro-recall@1 is equivalent to
micro-accuracy), that corresponds to the percentage of mentions
for which the correct entity is among the top-k ranked by BLINK.

2.2 NIL prediction

The NIL prediction task is often ignored by NEL systems that tend to
omit NIL mentions from the datasets when evaluating and eventu-
ally leave this task to future works. Indeed, out of the 38 approaches
compared by the survey [29] only 8 included NIL prediction. How-
ever, the TAC included NIL prediction in its KBP track starting from
2009 [23].

The task of NEL with NIL prediction can be seen as a classifica-
tion task with a reject option that is NIL or unlinkable. There are
four common approaches to perform NIL prediction [29]:

(1) Linking to NIL when the candidate generation gives an
empty set of candidates.

(2) Setting a threshold for the linking score, below which a
mention is considered unlinkable.

(3) Adding a NIL entity to the candidates’ set, in the ranking
phase. Hence, a new class is added to a classification problem.

(4) Training an additional binary classifier that accepts as input
mention-entity pairs possibly with additional features, such
as best linking score or information from NER, and that
finally classifies whether a mention is linkable or not.

In this work we opt for the fourth approach, the binary classifier,
as it allows exploiting additional features.

Being a classification task, NIL prediction is usually evaluated
on precision, recall, and F1 score of the NIL class [9].
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2.3 NIL clustering

The NIL clustering task is strongly related to co-reference resolution,
since both try to group together mentions referring the same en-
tities; however, NIL clustering does not have memory limitations
(as far as the index is manageable) and uses as much information
is available at a given time (documents are presented in batches
of arbitrary size, and not one by one). Results, in this way, should
be more accurate, since information is not removed from the in-
dex [20] and the output presents a mapping into the index itself (a
problem ignored by the co-reference task [7]).

The problem since its introduction [25] has not been investi-
gated exhaustively in literature: only 19 of the more than 150
solutions presented in [29] address the problem. Simple models
[8, 15, 17, 18, 22, 31-33, 36, 37] address the problem using matches
between surface forms, even using a fuzzy score given by a similar-
ity criterion (Jaccard or edit-distance) or using custom rules (e.g. to
manage acronyms). Some solutions [18, 32, 39] use unsupervised
learning or supervised learning on custom features in order to group
in clusters. Other approaches [2] instead exploits FastText [24] em-
beddings for clustering, or custom Word2Vec models [5] trained
on languages that lacks pretrained language models, or address the
problem with a three-steps solution [25]: mentions are grouped
according to their surface form, then re-splitted according to a
bag-of-words representation of documents and finally re-grouped
together based on the centroid distance of the sub-clusters. As far
as we know, no previous model uses embedding provided by a
transformer architecture for clustering mentions.

Since the NIL clustering task is similar to coreference resolution,
it can be evaluated on the same metrics: usually MUC, B3, and
CEAF [14, 26].

3 A BASELINE PIPELINE FOR INCREMENTAL
ENTITY EXTRACTION

We propose a pipeline-based system composed by three modules:
the NEL, the NIL prediction, and the NIL clustering modules. A
schema of the pipeline is available in figure 2: given a mention
with its context, the Linking module retrieves the best candidate
for linking the mention, then the NIL prediction module detects if
the best candidate is correct, in which case the mention is linked to
the BG-KB. Otherwise, the mention is NIL and is given, along with
all the other NIL mentions found in the current batch, to the NIL
clustering module that clusters together those mentions referring
to the same new entity. At this point, each cluster corresponds to a
new entity to add to the NEW-KB so that it can be retrieved when
linking future mentions. In this section, we further describe the
pipeline components, and we finally discuss the representation of
the novel entities.

3.1 Linking

The Linking module is based on the bi-encoder architecture [11],
which is able to represent mentions (in the context) or entities (with
a brief textual description) as dense vectors; at this point the linking
score corresponds to the dot-product between mention and entity
vectors.
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F1 NIL not-NIL  FI
max 15.2 82.7 48.9
max, levenshtein, jaccard 235 82.9 53.2
mayx, stats10, levenshtein, jaccard 50.6 83.4 67.0
max, secondiff, levenshtein, jaccard 51.2 83.0 67.1
max, secondiff 51.4 83.1 67.3

Table 1: NIL prediction feature ablation study on the dev
set (trained on the train set). max is the score of the best
candidate, levenshtein and jaccard are textual similarities
between the mention and the entity title, secondiff is the
difference between the best and the second-best score.

We use the bi-encoder for both candidate generation (through
approximate nearest neighbor) and candidate ranking [35]. In ad-
dition, the bi-encoder, behaving as a mapping function from the
real-world examples to the vectors cached in the index, does not
require any training step neither fine-tuning in case of KB updating
(a drop in performance is expected): it is therefore well-suited for
zero-shot NEL since, as will be seen, from the dense representation
it can be inferred the entity meaning in some ways analogue to the
human understanding process.

In the following experiments, we used the bi-encoder proposed
as the candidate generator of BLINK [35], available pre-trained on
GitHub?. For the Background KB we used the FAISS [16] index
based on the August 2019 Wikipedia dump and made available by
[35], making sure we filter out those entities we set as NIL for the
experiments of section 5. Despite BLINK behave worse than RELIC
[19, 20] on all co-reference resolution tests, we opted for the first
one as it is natively suited for zero-shot NEL.

3.2 NIL Prediction

The NIL prediction module predicts, given the candidates provided
by the linking module, whether the top-ranked candidate entity is
correct or not, without modifying the ranking given by the NEL
module. According to this prediction, the mention is respectively
linked to the top-ranked entity or set as NIL.

Our model is based on a logistic regression whose input is com-
posed by the linking score of the best candidate and the difference
between the best and the second-best score. This configuration is
the result of an ablation study (Table 1) conducted using the train
set for training and evaluating on the dev set of our dataset, that
is presented in the next section. The study considered, in addition
to the score of the best candidate for NEL, the similarity scores
derived by Levenshtein distance and Jaccard index of the mention
and the best candidate title, and some statistics (mean, median, and
standard deviation) of the scores of the top-k candidates (to not
consider only the top-1 candidate). An additional study has been
performed on the AIDA dataset [38] (in order to avoid overfitting
and to obtain information about the entity type), also considering
the types of both the mention and the top-ranked entity; this study
highlighted that statistics are strongly dependent on the training
KB thus not suited for I-NEL (that modifies the KB) and that types

3https://github.com/facebookresearch/BLINK
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can give an important contribution to the NIL prediction, but un-
fortunately our dataset lacks typing information. The output of
logistic regression belongs to [0, 1] and represents the confidence
of the linking between the mention and the best candidate (close to
0 means NIL). If the prediction is NIL, the mention is then passed to
the NIL clustering step in order to check if there are other mentions
of the same entity. The scores of the bi-encoder, on which the model
in the experiments below relies, are not normalized (dot-product)
and strongly depend on the embedding algorithm.

3.3 NIL Clustering

The NIL clustering module aims to group together the mentions
referring to the same entity. The process is made by steps, consid-
ering both the surface form and the embedding of the mentions. In
this way, the model is not easily fooled by homonyms. As a result,
for each cluster of mentions we can obtain a representation of the
corresponding entity using, for instance, the medoid vector of the
cluster.

We considered three different clustering approaches: the first,
GN NGB, uses a greedy nearest neighbor clustering (GNN) algorithm
on the dense vectors of the mentions obtained by the bi-encoder.
GNN consists in clustering a mention m with all the other mentions
whose similarity with m is higher than a predefined threshold. This
algorithm combined with different vectorizers obtained promising
results in [20].

The second clustering method, GN NF, relies on GNN but with a
feature-based vectorizer. We used the same feature-based vectorizer
of [30], which uses character skip bigram indicator vectors to en-
code the surface text, and tf-idf vectors to represent contexts. The
clustering thresholds for both GNNp and GN NF have been calcu-
lated so that the number of predicted clusters on the dev dataset
approximately matches the number of unique entities [20].

The third clustering method, 3Steps, is a three-steps algorithm
[25]: initially the mentions are clustered using their surface form
(edit-distance < 3 for words longer than 3 characters, perfect match
otherwise). Then, inside each cluster we apply a hierarchical clus-
tering algorithm, splitting to a predefined threshold, considering
the mentions’ dense vectors provided by the bi-encoder that cor-
respond to a semantic representation of the mention. In this way,
each cluster from the first step is divided into sub-clusters. Finally,
semantically similar sub-clusters are merged together, according to
the distance between their medoid vectors.

Novel Entities Representation. New entities lack a meaningful de-
scription that is required by the bi-encoder to represent them. Tak-
ing advantage of the dense representation of the mentions, we are
able to obtain a vector for a new entity even without a description.
This process can be seen as to infer the meaning of an entity from
real-world examples. We tested three possible solutions to represent
new entities (that are clusters of NIL mentions):
o using the vector of the first mention encountered;
o using the medoid vector of the mentions of the cluster at the
time in which it is stored into the KB;
¢ including in the KB all the mentions vectors, as they were
different entities.
Table 2 summarizes the performance of the bi-encoder using
each one of the three strategies, as well as their time and disk
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Figure 2: Schema of the pipeline.

Table 2: Recall results of the linking from scratch experiment
(on AIDA [38]) with retrieval time and disk requirements.

‘ R; Rs Ryg Rsg ‘ #vectors time(s) disk(MB)
first 73.7 856 919 9538 4022 2.4 16
medoid | 79.5 91.1 959 98.7 4022 2.4 16
all 939 96.7 985 993 18319 44.1 72

requirements. Tests have been conduced on AIDA for the same
reasons of the NIL predictor.

Despite the latter strategy obtains the highest recall values, we
decided to use the medoid vector to save resources. In fact it takes 5%
of the time and it requires 22% of the disk space. This strategy indeed
represents a good trade-off between efficiency and effectiveness.

Despite the human intervention, the problem of finding the
better representation for new entities still persists: a validator may
annotate an unrepresentative set of mentions for a given entity,
since embeddings are not interpretable, introducing a bias in next
batches.

4 TRANSFORMING A NEL BENCHMARK INTO
AN INCREMENTAL ENTITY EXTRACTION
BENCHMARK

In order to test our pipeline in a realistic scenario, the chosen test
dataset should be representative of characteristics that we expect
to find in the real world. For example, the entity frequency dis-
tribution should have a long right-tail: there are a few popular
(high-mentioned) entities, while most are not well-known; entities
in train and test data should belong to the same domains (domain
adaptation is an interesting problem, but is left out of this evalua-
tion); the dataset should be big enough to easily train data-hungry
models and to have a test set that can be split into several batches.

The most valuable candidate datasets for being adapted to the
incremental scenario are: AIDA [38], Zero-shot EL dataset [21],

KORES50 [10], TACKBP-2010 [13], and WikilinksNED Unseen-Mentions

(WNUM) [27]. In this paper we applied the following methodology
to WNUM, because it is the only one freely available with the above
mentioned features (e.g., AIDA is smaller than WNUM and has no
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Table 3: Statistics about the dataset before and after the trans-
plant.

mentions (NIL) entities (new)
train 22M  (25744) | 86184 (17957)
dev 10k  (316) 2397 (61)
test 10k (307) 2514 (63)
train | 2.008M (25365) | 81858 (17619)
dev 100k  (501) 7105 (214)
test 100k  (501) 6473 (248)

ground truth on NILs) and uses links to Wikipedia entities, as well
as most state-of-the-art NEL algorithms which use Wikipedia as
reference KB [3, 6, 35]. Observe that even if Wikipedia may be not
considered a proper KB, links between Wikipedia and Wikidata
or DBpedia exists, in such a way that information about most of
Wikipedia entities can be collected from proper KBs. In addition, it
is designed so that each of the sets (train, dev, test) never contains a
mention-entity pair that is present in another set, which is a highly
appreciated property for our task.

New entities. In order to simulate the presence of new entities,
we randomly flag some entities as NILs, preserving the ground
truth. This process is made in a proportional way with the number
of mentions of the entity itself in the train set and so that a certain
number of new entities can be chosen arbitrarily. For each entity
we calculate the score:

pNIL(X) = p M € (0,+1] (1)

Where p is the desired percentage of NIL entities (we set it to
p = 0.1 [1]); M is the median of entity frequencies in the train
set (the mean provides inaccurate results due to the presence of
a long tail of low-frequencies entities), and #x is the number of
mentions referring to the entity x in the train set. This function is
demonstrated to be monotonically decreasing, providing a higher
number of New Entities which are mentioned only once in the train
set, since, conceptually, there are a lot of new entities which are
not included due to data quality matters (low mentioned) and a
few entities which may become popular (in the meaning of “high
mentioned”) in a small span of time.

Then, we flag each entity as new (NIL) according to a Bernulli test
with probability p = pnyr; entities flagged as NILs are removed
from the BG-KB, since they become unknown. At this point, some
mentions of NIL entities are transplanted from the train set to the
dev and test sets only to increase the number of new entities in
these latter sets (see Table 3), obtaining more robust metrics: this
step is made randomly so that both dev and test sets have 500 new
mentions each. Finally, we divide the test set in 10 batches with a
stratified sampling on entity frequencies and NILs. Table 4 shows
several per-batch statistics about the dataset.

5 EVALUATION

To evaluate the I-NEL we need to consider that, given a mention m
that refers to an entity E, the correct behavior may depend also on
previous batches: in case E is not present in the BG-KB at time ¢;,
m should be classified as NIL; but, if one of the previous batches
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Table 4: Per-batch statistics about the test set: number of
mentions, entities, NIL mentions, new entities, and |Prev E|:
new entities already found in a previous batch (that should
be linked to an entity previously added to the NEW-KB)

| IM| |E| INILM| |NILE| |PrevE]|
bo 10k 2.5k 50 37 -
by 10k 2.5k 50 35 12
by 10k 2.5k 50 44 15
b3 10k 2.5k 50 41 16
by 10k 2.5k 50 38 10
bs 10k 2.5k 50 40 18
be 10k 2.5k 51 46 22
by 10k 2.5k 50 41 19
bs 10k 2.5k 50 40 22
by 10k 2.5k 50 44 24
ALL | 100k 6.5k 501 248 -
a. b. c d
Wq bore
& ke —
‘ train
g train train
= ev
=
dev ev U st
| test || test | i es

Figure 3: Construction of the I-NEL dataset from a NEL
dataset (a): first p% of mentions from the corpus are flagged
as NILs and corresponding entities are removed from the KB
(b); then observations are just transplanted in order to obtain
a well-represented distribution for the evaluation (c); finally
the test set is split in batches (d).

contained a mention of E, the system should have already added
it to the NEW-KB and therefore m should be linked to E. Figure 4
summarizes how mentions should be processed according to the
entity to which they refer.

The evaluation procedure for the I-NEL task should calculate
the overall performance of a given system as well as its specific
performance on the subset of mentions that, in each batch, needs
to be (a) linked to the BG-KB, (b) classified as NIL, or (c) linked to
the NEW-KB (see Figure 4).

Finally, to better understand the impact of the error propagation
between batches, the I-NEL evaluation needs to be comparable with
a standard single-batch approach.

5.1 Evaluation Measures

The evaluation of an incremental pipeline is not intuitive compared
to a single model, since the error propagates not only through the
pipeline but also through time (in the meaning of batches).
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First, we define the measures to evaluate the whole pipeline on
the I-NEL task:

e (a) the “Link to BG-KB”: the accuracy with the mentions that
should be linked to the BG-KB;

o (b) the “NIL”: the accuracy with the mentions that should be
classified as NIL;

e (c) the “Link to NEW-KB”: the accuracy with the mentions
that should be linked to the NEW-KB;

e (d) the “Overall Accuracy” as an overall score on all the
mentions.

Then, in order to understand how each component of the pipeline
behaves for its specific task, we additionally evaluate each module
separately:

e NEL: we calculate Recall@1 for the candidate generation
task; since the linking is made with the first candidate. Note
that this metric coincides with accuracy.

o NIL predictor: we calculate precision, recall, and f1-score of
the “NIL” class.

e NIL clustering: similar to the co-reference resolution task
[20], we calculate precision, recall, and f1-score of the three
metrics MUC, Bz, and CEAF,. We also provide the average
of the f1-scores.

The clustering procedure, however, requires some further expla-
nations for the error analysis. In particular, remember that after
clustering novel entities are added to the KB: a mention which
refers to an entity previously added in the NEW-KB is treated cor-
rectly if linked to that new entity, while labeling it as NIL is an
error. This precaution avoids obtaining high performance in case
the NIL clustering presents each mention as a novel entity.

In addition, the NIL prediction mitigates NEL errors: if the linking
is wrong, the NIL predictor would ideally classify the mention as
NIL because the entity offered by the linker is not correct, despite
the presence of the correct entity in the BG-KB. Obviously, if the
NIL predictor does not classify the mention of a novel entity as NIL,
it is considered as an error.

Finally, if a new entity is erroneously created due to a false
positive in the NIL prediction while the correct entity already exists
in the BG-KB, each mention linked to this incorrect new entity is
considered as an error.

5.2 Experiments

To allow the comparison with other models, we decided to test our
baselines with the following experiments: the first one runs the
evaluation on the whole test set (one-pass), with only one step of
clustering; the second experiment, instead, is an incremental evalu-
ation on the 10 batches of the test set. This second experiment is
the focus of the present work and simulates the arrival of new doc-
uments in the pipeline. Note that the evaluation process is different
in the two experiments, since the NIL clustering has side-effects: it
adds novel entities to the NEW-KB that are linkable in the following
batches. The first experiment has two main purposes: it provides
results comparable with other models in literature and permits to
estimate the drop in performance of the incremental procedure. We
evaluated the three baselines (that differ in the clustering approach)
using these two experimental setup, although in table 5 we report
only the NIL clustering performance for all the baselines, while the
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Figure 4: Schema of the expected outcome of the system,
given a mention m referring to an entity E, when (a) E is
known “a priori”, (b) E has already been added while process-
ing the previous batches, (c) E is not in the KB.

remaining metrics are obtained using the top-performing cluster-
ing approach (3Steps). Finally, we run another experiment, called
“correct®, that corrects the output of previous components before
proceeding through the batches and the pipeline, to better study
the error-propagation. In able 5 we show the "correct performance
only of the top-performing pipeline (3Steps).

5.3 Results

In order to investigate which component of the pipeline has a
stronger contribute to the final error, we analyzed each component
one by one.

The results of the most relevant experiments are reported in table
5. We can see that the performance of the NEL module is competitive
compared to more complex models of state of the art: in particular,
GENRE [6] obtains a R@1;4;4; = 74.7 and R@1ynseen = 70.4, which
are quite similar to ours (excluding error propagation). The drop
in performance, as expected, is due to the error propagation in the
incremental procedure and not to a poor NEL model. Indeed, in the
“correct” experiment, there is no performance drop caused by the
error propagation.

The NIL prediction component, despite the high precision, yields
a high number of false negatives (entities that are predicted to
be in the KB while they were new). A low recall translates in a
low number of false NILs, which drastically decreases the error
propagation through time.

With respect to the NIL clustering, analyzing and well under-
standing this component is fundamental, since it has side effects
that propagate through following steps, and therefore presents dif-
ferent results if run one batch by one or on a single pass. Among the
evaluated approaches the top-performing one is the 3Steps; the rea-
son could be that this method exploit a combination of lexical and
semantic similarities between the mentions, while the other two
(GNNp and GNNF) only exploit semantic dense representations.

The NIL predictor introduces two critical problems in the pipeline:

false positives of the NIL predictor propagate errors through batches
causing the NEW-KB to be full of redundant representations of the
same entities; on the other hand, when NIL mentions are erro-
neously identified as not-NIL, the pipeline misses mentions useful
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Figure 5: The absolute frequency of clusters by size (the
points) vs the expected values (the curve) from the test-set.

to represent a new entity. For this reason, to mitigate error propaga-
tion through time, it is preferable to achieve higher precision than
higher recall. To visualize an overview of the process, figure 5 shows
that the number and size of clusters predicted by the pipeline is
approximately as expected. A higher precision translates in a lower
number of clusters, for the most representing novel entities; while a
higher recall translates in a higher number of false representations
of entities already included in the BG-KB.

Those errors could be mitigated by a HITL process, which merges
clusters representing the same entities (fixing errors of the NIL
predictor) or splits a cluster, removing wrong mentions.

5.4 Discussion: Challenges in Incremental
Entity Extraction

The results demonstrate that error propagation across batches is
a key challenge in incremental entity extraction. A drop in per-
formance can be especially observed on NEL results, as shown in
table 5: the results obtained in the first batch are comparable to the
ones obtained in the one-pass experiment and with the “correct®
experiment, while they deteriorate in the following batches.

As previously explained, a major source of errors came from the
false positives introduced by the management of NILs, suggesting
that effective NIL prediction is an important challenge for the I-NEL
task; in fact, low precision leads to the introduction of error into
the pipeline and, therefore, to performance deterioration.

Finally, in our experiments, we use a single vector for novel
entity representation: the medoid obtained from the clusters of
the NIL mentions. Evidence (see Table 2) show that this method is
sub-optimal, despite being more efficient. The problem of how to
represent new entities, for instance using more than one vector per
cluster or with different strategies (e.g. bounding-boxes), is another
important challenge in the I-NEL task that is worth studying in
order to find a better compromise between effectiveness and effi-
ciency. We leave this exploration to future works. Also the problem
of deciding when to update the KB is quite interesting (the index
is now updated after having processed the first batch in which
the new mention appears): it may be the case that collecting more
observations of a new entity is necessary to obtain a good repre-
sentation, possibly considering a confidence score. This aspect was
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bo by by bs by bs be by bg bo b one-pass
NEL R@1 72.64  62.03 55.43 51.68 46.53  45.02 41.71 40.56  39.03 38.39  49.30 72.91
NIL Pred P 65.16  66.25 70.55 7430 7892 78.64 80.00 79.53  81.38 81.96  75.67 64.01
R 46.74  30.51 30.55 31.47 3359 34.14 34.32 34.21  35.79 36.10 34.74 46.06
F1 5443 41.78  42.63  44.22 47.13 47.61 48.04 47.84 49.71 50.12  47.35 53.57
NIL Clust: comparison among 3Steps, GNNpg, GN NE: best results highlighted in bold
3Steps MUC F1 96.84 9597 9589 9649 96.96 97.10 96.94 97.48 97.26 97.48 96.84 97.38
B3 F1 97.43 97.07 96.73 96.25 96.48 96.66 96.11 97.14 95.79 96.55 96.62 94.36
CEAF F1 95.16 94.43 93.10 93.02 92.56 93.15 92.38 93.35 9249 93.26 93.29 82.27
F1 96.48 95.82 95.24 95.25 9533 95.63 95.14 9599 95.18 95.76 95.58 91.34
GNNg MUC F1 86.48  84.22 84.55 87.65 89.23 89.60 89.30 91.07 90.88 91.05 88.40 91.56
B3 F1 91.33  90.12 89.07 90.34 90.92 90.74 90.36 91.69 91.72 91.92  90.82 86.46
CEAF F1 84.96 83.94 80.62 81.65 80.95 81.58 80.77 82.57 81.38 81.14 81.96 64.61
F1 87.59  86.09 84.75 86.54 87.03 87.31 86.81 88.44  87.99 88.04 87.06 80.88
GNNFr MUC F1 36.08 31.05 31.04 29.84 2837 28.16 27.67 28.53  26.69 29.17  29.66 65.18
B3 F1 71.66  65.16 58.68 56.80 55.03 54.78 53.31 5440 51.89 51.16  57.29 48.83
CEAF F1 62.72 5691 49.09 47.01 4490 44.60 43.24 44.22  41.66 40.46  47.48 35.89
F1 56.82 51.04 46.27 44.55 4277 4251 41.41 42.39  40.08 40.26  44.81 49.96
Overall (a) Link 65.67 56.05  49.68  46.36 41.69 39.87 36.67 3529 3399 3346 43.87
(b) NIL 42.00 38.46 51.35 32.35  60.00 50.00 41.18 46.67 44.44 3793 44.44
(c) Link New n/a*  36.36 76.92 68.75 73.33  70.00 70.59 85.00  69.57 61.90 61.24
(d) Acc 65.55 5596  49.72 4635 4180 39.96 36.74 3542 3410 33.53 4391
Correct
NEL R@1 72.64 72.11 72.24 72.79 7226 73.13 71.71 72.77  71.87 72.28 72.38
NIL Pred P 5543 55.17 54.87 54.26 5552  55.61 55.96 56.21  55.83 54.38  55.32
R 4332 4243 45.47 43.02 4357 4344 42.22 4491 42.30 43.08 43.38
F1 48.63  47.97 49.73 47.99 48.83 48.78 48.13 4993 48.13 48.08  48.62
NIL Clust MUC F1 100.00  80.00 - 100.00 66.67 66.67 - 100.00 - - 5133
3Steps B3 F1 100.00 97.26  100.00 100.00 95.65 97.78 100.00 100.00 97.14 100.00 98.78
CEAF F1 100.00  96.89 100.00 100.00 94.53 96.12 100.00 100.00 95.24 100.00 98.28
F1 100.00  91.38 66.67 100.00 85.62 86.86 66.67 100.00 64.13 66.67  82.80

Table 5: Evaluation results: NEL, NIL Pred, Overall, and Correct are obtained using the pipeline with the 3Steps clustering
algorithm (the top performing one). Correct results are obtained correcting the output of the previous components. NIL
prediction performance are calculated considering correct when a NEL error is mitigated. *“Nothing can be linked to previously

"_n

added entities in by.
0) is not meaningful [28].

ignored at the moment since it is highly correlated to the long-tail
entities problem (in the meaning of “mentioned few times”): in fact
the dataset was modified in order to add a high number of new
entities mentioned only once. Finding a good trade-off between
getting useful representations and handle entities mentioned only
once, is an interesting problem for future work.

6 CONCLUSION

In this work, we introduce the task of incremental NEL (I-NEL),
providing both a dataset and a simple pipeline, both as baseline and
as a workbench to identify critical components.

Our experiments show that a main challenge for I-NEL is to deal
with the incremental propagation of error, which is due, especially,
to the difficulty of linking entity mentions found in one batch to
novel entities, i.e., entities not in the background KB and added
to the NEW-KB in previous batches. Finding representations of

represents cases where the gold standard contains one element per cluster; in this case, MUC F1 score (=

novel entities that provide a reasonable trade-off between efficiency
and effectiveness is not trivial. Indeed, the performance of the NEL
component [35] is reasonably good at the beginning but worsen
over time. Another component that must be improved to deliver
robust incremental NEL is NIL prediction.

Future works include the application of our methodology to
generate incremental versions of more datasets. In addition, we
plan to elaborate on methods to address the main challenges found
in I-NEL, especially in relation to the management of novel entities
(NIL prediction and NIL mention representation).

The dataset, the source code of the procedure to create it, and
the code for the evaluation are openly available at https://github.
com/rpo19/Incremental-Entity-Extraction/.
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