
𝜇-Bench: Real-world Micro Benchmarking for SPARQLQuery
Processing over Knowledge Graphs

Muhammad Saleem
saleem@mail.uni-paderborn.de
The Data Science (DICE) group

University of Paderborn, Germany
Germany

Adnan Akhter
akhter@informatik.uni-leipzig.de
The Data Science (DICE) group

University of Paderborn, Germany
Germany

Sahar Vahdati
vahdati@infai.org

Institute for Applied Informatics (InfAI)
Dresden,
Germany

Axel Cyrille Ngonga Ngomo
axel.ngonga@upb.de

The Data Science (DICE) group
University of Paderborn, Germany

Germany

ABSTRACT
Real-world SPARQL querying benchmarks, which make use of the
real-world RDF datasets and/or SPARQL queries, are the key ele-
ment in testing the performance of different RDF Knowledge graph
management systems in real-world settings. Over the last years, var-
ious real-world SPARQL querying benchmarks have been proposed.
Although useful for general purpose SPARQL benchmarking, they
do not allow generating microbenchmarks, i.e., small customized
benchmarks according to the user specified criteria for a specific use
case. These microbenchmarks are important to perform component-
based testing, hence pinpoint pros and cons of the systems at micro
level. We propose 𝜇-Bench, a microbenchmarking framework for
SPARQL query processing over RDF knowledge graphs. The frame-
work makes use of the real-world (collected from query logs of
public SPARQL endpoints) SPARQL queries to generate customized
benchmarks according to the user defined criteria. The framework
utilizes various clustering algorithms to select diverse benchmarks
from the given input query log. We generated various microbench-
marks and evaluated state-of-the-art knowledge graph engines.
The evaluation results show that specialized microbenchmarking is
crucial for identifying the limitations of the various SPARQL query
processing engines and other corresponding components.

CCS CONCEPTS
• Information systems→ Presentation of retrieval results.
ACM Reference Format:
Muhammad Saleem, Adnan Akhter, Sahar Vahdati, and Axel Cyrille Ngonga
Ngomo. 2022. 𝜇-Bench: Real-world Micro Benchmarking for SPARQL Query
Processing over Knowledge Graphs. In Proceedings of International Joint
Conference on Knowledge Graphs (IJCKG ’2022). ACM, New York, NY, USA,
9 pages. https://doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IJCKG ’2022, October 27–29, 2022, Hangzhou, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Over the last few years, an enormous number of RDF datasets
have been published in the form of knowledge graphs. Several Big
RDF datasets such as UniProt1 (105.5 billion triples), Linked TCGA
[18] (20.4 billion triples), Linked Geo Data [5] (20 billion triples)
etc. have been added into the Linking Open Data (LOD) cloud.
Storing and querying such massive knowledge graphs still remains
a challenging task. To this end, various triplestores (RDF knowledge
graph storage and querying engines) have been developed for the
last two decades [1]. The performance of these triplestores is the
central importance for the applications based on RDF knowledge
graphs. Consequently, several RDF benchmarks have been proposed
that allow to assess the performance of such triplestores [7, 23].

Although many of thee existing benchmarks [2, 8, 10, 12, 16, 23–
27] are useful for general purpose SPARQL benchmarking, they do
not allow generating customized benchmarks according to the user
specified criteria for a specific use case. For example, a user may be
interested to test a given a triplestore based on real-world data and
SPARQL queries with the following properties: (1) the number of
triple patterns in the SPARQL queries should be at least three with
at least one join variable, (2) the result size of the query should be
greater than 1000, and (3) the number of projection variables in
the SPARQL queries should be exactly two. Such use-case specific
micro benchmarks are important to perform components-based
testing and hence pinpoint pros and cons of the systems at micro
level. The FEASIBLE [19] benchmark aims to generate customized
benchmarks. However, their approach make use of a single cluster-
ing method. Therefore, the variety of the benchmarks generated by
this framework is limited. In addition, it requires a pre-processing
step to clean the given input queries and convert it into an accepted
format by FEASIBLE , which is time consuming.

Previous works [2, 11, 23] pointed out various datasets and query
features that can affect the performance of triplestores. For exam-
ple, the benchmarks analysis [23] pointed out that the number of
projection variables, join vertices, triple patterns, the result sizes,
and the join vertex degree are the top five SPARQL features that
have the highest impact on the overall query execution time. A
given SPARQL benchmark should have sufficient diversity in these

1UniProt: https://www.uniprot.org/

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://www.uniprot.org/


IJCKG ’2022, October 27–29, 2022, Hangzhou, China Saleem et al.

features among the set of queries included in the benchmark [2, 23].
Testing triplestores with less diverse SPARQL benchmarks may
favour a particular type of triplestores and hence biased the overall
performance evaluation [2, 23].

We propose 𝜇-Bench, a SPARQL benchmarking framework that
allows users to generate customized microbenchmarks on various
SPARQL features. The framework requires a set of SPARQL queries
(real or synthetic) to be provided as an input. The selection of the
microbenchmarks (subset of the input queries) is performed by
using state-of-the-art distance-based clustering methods. The user
is able to apply various filters on the given SPARQL features to be
considered while generating microbenchmarks. The framework can
be employed both for real-world and synthetic microbenchmarking.
In this paper, we mostly focus on real-world benchmarking2. The
required input queries can be directly provided from the Linked
SPARQL Queries (LSQ) [25] datasets, a set of RDF datasets con-
taining real-world SPARQL queries collected from public SPARQL
endpoints. At present, the LSQ datasets describes 43.95 million exe-
cutions of 11.56 million unique SPARQL queries extracted from the
logs of 27 different endpoints.

Our main contributions are as follows:
• The proposed framework provides customized microbench-
marks according to user-defined criteria on important SPARQL
features. The framework gives flexibility to perform mi-
crobenchmarking based on various clustering methods.

• The framework is directly compatible with LSQ datasets.
Given a url for any of the 27 LSQ endpoints, it generates
real-world microbenchmarks for 27 different knowledge
graphs with a total of 11.56 million queries without any
pre-processing of data.

• We evaluate the performance of the different triplestores
based on the microbenchmarks generated by our framework.
In addition, the supported clustering methods have been
compared in terms of diversity of the benchmarks generated
by these clustering methods.

𝜇-Bench is freely available from https://github.com/dice-group/mu-
Bench.

2 PRELIMINARIES
In general, a querying benchmark consists of four main compo-
nents: (1) a set of dataset(s), (2) a set of queries to be executed
against the datasets, (3) a set of performance metrics to compare
querying engines, and (4) a set of execution rules, e.g, parameters
settings. A querying benchmark should carefully select the first
two components in order to have sufficient feature variety with
respect to various dataset and queries [23].

For microbenchmarking, the literature about SPARQL querying
benchmarks [2, 13, 17, 19, 22, 23] highlighted various SPARQL fea-
tures to be considered while designing querying workloads. Saleem
et al. [23] calculated the correlation of various SPARQL features
with the query runtime based on different SPARQL query pro-
cessing engines. The top 10 SPARQL query features with highest
impact on the query runtime are reported as: (1) number of pro-
jection variables used in the given SPARQL query, (2) the number
of join vertices, (3) the number of triple patterns, (4) the query
2We have more real-world queries from public SPARQL endpoints available.

result size, (5) join vertex degree, (6) join-restricted triple pattern
selectivity, (7) triple pattern selectivity, (8) number of Basic Graph
Patterns (BGPs), (9) number of LSQ features, and (10) BGP-restricted
triple pattern selectivity. The study also mentioned the highly
used SPARQL clauses (e.g., LIMIT, OPTIONAL, ORDER BY, DISTINCT,
UNION, FILTER, REGEX) which have direct impact on the runtime
performance of triplestores. Our proposed microbenchmarking
framework makes use of all of these features while selecting cus-
tomized use-case specific benchmarks. We now formally provide
the definitions for these features which are mostly reused from the
previous works [2, 4, 23].

Definition 1 (RDF Term, RDF Triple and RDF Dataset). Assume
there are pairwise disjoint infinite sets 𝐼 , 𝐵, and 𝐿 (IRIs, Blank nodes,
and Literals, respectively). Then the RDF term is noted by 𝑅𝑇 where
𝑅𝑇 = 𝐼 ∪ 𝐵 ∪ 𝐿. Any triple (𝑠, 𝑝, 𝑜) ∈ (𝐼 ∪ 𝐵) × 𝐼 × (𝐼 ∪ 𝐵 ∪ 𝐿) is
called an RDF triple, where 𝑠 is called the subject, 𝑝 the predicate
and 𝑜 the object. An RDF data set or data source 𝐷 is a set of RDF
triples 𝐷 = {(𝑠1, 𝑝1, 𝑜1), . . . , (𝑠𝑛, 𝑝𝑛, 𝑜𝑛)}.

Definition 2 (Query Triple Pattern and Basic Graph Pattern). By
using Definition 1 and assuming an infinite set 𝑉 of variables, a
tuple tp ∈ (𝐼 ∪𝐿∪𝑉 ∪𝐵) × (𝐼 ∪𝑉 ) × (𝐼 ∪𝐿∪𝑉 ∪𝐵) is a triple pattern.
A Basic Graph Pattern (BGP) is a finite set of triple patterns.

Definition 3 (Basic Graph Pattern). The syntax of a SPARQL Basic
Graph Pattern 𝐵𝐺𝑃 expression is defined recursively as follows:

(1) A tuple from (𝐼 ∪ 𝐿 ∪𝑉 ∪ 𝐵) × (𝐼 ∪𝑉 ) × (𝐼 ∪ 𝐿 ∪𝑉 ∪ 𝐵) is a
graph pattern (a triple pattern).

(2) The expressions (𝑃1 AND 𝑃2), (𝑃1 OPTIONAL 𝑃2) and (𝑃1
UNION 𝑃2) are graph patterns, if bith of the 𝑃1 and 𝑃2 are
graph patterns.

(3) The expression (𝑃 FILTER𝑅) is a graph pattern, if 𝑃 is a graph
pattern and 𝑅 is a SPARQL constraint or filter expression.

In our approach, the BGPs are represented as directed hypergraph
(DH) [21], in which each subject, predicate, and object of a triple
pattern represent a single vertex, connected by hyperedges. It is
unlike a common SPARQL representation where the subject and
object of the triple pattern are connected by an edge, labeled with
a predicate name. In this representation, every hyperedge captures
a triple pattern such that the subject of the triple pattern becomes
the source vertex of a hyperedge and the predicate and object
(both combined) of the triple pattern become the target vertices.
An example DH representation of a SPARQL query is shown in
Figure 1. Unlike common triple pattern representation, the DH
representation contains nodes for all three components of the triple
patterns. The advantage of this representation is that we can capture
predicate-predicate joins, i.e, joins between predicates of the triple
patterns of SPARQL query. Formally, our hypergraph representation
is defined as follows [21]:

Definition 4 (Directed hypergraph of a BGP). The hypergraph
representation of a BGP 𝐵 is a directed hypergraph 𝐻𝐺 = (𝑉 , 𝐸)
whose vertices are all the components of all triple patterns in 𝐵, i.e.,
𝑉 =

⋃
(𝑠,𝑝,𝑜) ∈𝐵{𝑠, 𝑝, 𝑜}, and that contains a hyperedge (𝑆,𝑇 ) ∈ 𝐸 for

every triple pattern (𝑠, 𝑝, 𝑜) ∈ 𝐵 such that 𝑆 = {𝑠} and 𝑇 = (𝑝, 𝑜).

The representation of a complete SPARQL query as a DH is the
union of the representations of the query’s BGPs.

https://github.com/dice-group/mu-Bench
https://github.com/dice-group/mu-Bench


𝜇-Bench: Real-world Micro Benchmarking for SPARQLQuery Processing over Knowledge Graphs IJCKG ’2022, October 27–29, 2022, Hangzhou, China

Prefix l s q : < h t t p : / / l s q . aksw . org / vocab # >
SELECT DISTINCT ? q Id ? p r o jVa r s ? j o i n V e r t i c e s
? t p s ? r s ? r t ? meanJo inVer texDegree {
? q Id l s q : t e x t ? t e x t .
? q Id l s q : h a s S t r u c t u r a l F e a t u r e s ? s f .
? s f l s q : p r o j e c t V a r s ? p r o jVa r s .
? s f l s q : j o i n V e r t i c e s ? j o i n V e r t i c e s .
? s f l s q : t p s ? t p s .
? s f l s q : meanJo inVer texDegree

? meanJo inVer texDegree .
? q Id l s q : ha sLoca lExec ? l e .
? l e l s q : r e s u l t S i z e ? r s .
? l e l s q : runTimeMs ? r t .
F i l t e r ( ? r t > 50 && ? r s < 50 && ? t p s < 10
&& ( ? p r o jVa r s = 3 | | ? j o i n V e r t i c e s > 2 ) ) }
LIMIT 1000

(a) SPARQL query

qId

le

sf

:hasLoc
alExec

:hasStructu
ralFeatures

:text

text

:result
Size

rs

rt

:runTi
meMs

Tail/target of Hyperedge

Join 
node

:project
Vars

:joinVer
tices

:usesFe
ature

:meanJoinV
ertexDegree

:tps

tps

projVars
joinVer

tices
Select

meanJoinVe
rtexDegree

(b) DH representation

Figure 1: DH representation of the SPARQL query given in
Figure 1a. Prefixes are ignored for succinctness

Based on the DH representation of SPARQL queries, we can
define the following features of SPARQL queries, which we will be
using in 𝜇-Bench :

Definition 5 (Join Vertex). For every vertex 𝑣 ∈ 𝑉 in such a hy-
pergraph, we write 𝐸in(𝑣) and 𝐸out(𝑣) to denote the set of incoming
and outgoing edges, respectively; i.e., 𝐸in(𝑣) = {(𝑆,𝑇 ) ∈ 𝐸 | 𝑣 ∈𝑇 }
and 𝐸out(𝑣) = {(𝑆,𝑇 ) ∈𝐸 | 𝑣 ∈𝑆}. If |𝐸in(𝑣) | + |𝐸out(𝑣) | > 1, we call 𝑣
a join vertex.

In Figure 1b, all vertexes highlighted in blue are join nodes.

Definition 6 (Join Vertex Degree). Based on the DH representation
of the queries the join vertex degree of a vertex 𝑣 is JVD(𝑣) =
|𝐸in (𝑣) | + |𝐸out (𝑣) |, where 𝐸in (𝑣) resp. 𝐸out (𝑣) is the set of incoming
resp. outgoing edges of 𝑣 .

In Figure 1b, the join vertex degree of the vertex qId is three,
since it is 3 outgoing hyperedges and no incoming hyperedge.

Definition 7 (Join Vertex Types). A vertex 𝑣 ∈ 𝑉 can be of type
star, path, hybrid, or sink if this vertex participates in at least one

join. A star vertex has more than one outgoing edge and no in-
coming edges. A path vertex has exactly one incoming and one
outgoing edge. A hybrid vertex has either more than one incoming
and at least one outgoing edge or more than one outgoing and at
least one incoming edge. A sink vertex has more than one incoming
edge and no outgoing edge. A vertex that does not participate in
any join is of type simple.

In Figure 1b, all the join vertices highlighted in blue are of type
star, since they all have more than one outgoing hyperedge and
no incoming hyperedge .

Definition 8 (Triple Pattern Selectivity). Let tp𝑖 be a triple pattern
of a SPARQL query𝑄 and 𝐷 be a dataset. Furthermore, let 𝑁 be the
total number of triples in𝐷 andCard (tp𝑖 , 𝐷) be the cardinality of tp𝑖
w.r.t. 𝐷 , i.e., total number of triples in 𝐷 that matches tp𝑖 , then the
selectivity of tp𝑖 w.r.t. 𝐷 denoted by Sel(tp𝑖 , 𝐷) = Card (tp𝑖 , 𝐷)/𝑁 .

Definition 9 (BGP-Restricted Triple Pattern Selectivity). Consider
a Basic Graph Pattern BGP and a triple pattern tp𝑖 belonging to
BGP , let 𝑅(tp𝑖 , 𝐷) be the set of distinct solution mappings (i.e.,
result set) of executing tp𝑖 over dataset 𝐷 and 𝑅(BGP, 𝐷) be the
set of distinct solution mappings of executing BGP over dataset
𝐷 . Then the BGP-restricted triple pattern selectivity denoted by
SelBGP-Restricted (tp𝑖 , 𝐷) is the fraction of distinct solution mappings
in 𝑅(tp𝑖 , 𝐷) that are compatible (as per standard SPARQL seman-
tics [3]) with a solution mapping in 𝑅(BGP, 𝐷) [2]. Formally, if Ω
and Ω′ denote the sets underlying the (bag) query results 𝑅(tp𝑖 , 𝐷)
and 𝑅(BGP, 𝐷), respectively, then

SelBGP-R. (tp𝑖 , 𝐷) =
|{𝜇 ∈ Ω |∃𝜇 ′ ∈ Ω′ : 𝜇 and 𝜇 ′ are compatible}|

|Ω |

Definition 10 (Join-Restricted Triple Pattern Selectivity). Consid-
ering a join vertex 𝑥 in the DH representation of a BGP , let BGP ′
belonging to BGP be the set of triple patterns that are incidents
to 𝑥 . Furthermore, let tp𝑖 belonging to 𝐵𝐺𝑃 ′ be a triple pattern
and 𝑅(tp𝑖 , 𝐷) be the set of distinct solution mappings of executing
tp𝑖 over dataset 𝐷 and 𝑅(BGP ′, 𝐷) be the set of distinct solution
mappings of executing BGP ′ over dataset 𝐷 . Then the x-restricted
triple pattern selectivity denoted by 𝑆𝑒𝑙JVx-Restricted (tp𝑖 , 𝐷), is the
fraction of distinct solution mappings in 𝑅(tp𝑖 , 𝐷) that are compat-
ible with a solution mapping in 𝑅(BGP ′, 𝐷) [2]. Formally, if Ω and
Ω′ denote the sets underlying the (bag) query results 𝑅(tp𝑖 , 𝐷) and
𝑅(BGP ′, 𝐷), respectively, then

SelJVx-R. (tp𝑖 , 𝐷) =
|{𝜇 ∈ Ω |∃𝜇 ′ ∈ Ω′ : 𝜇 and 𝜇 ′ are compatible}|

|Ω |

Finally, we combine all these important query features into a
single composite metric called the Diversity Score of the benchmark
queries.

Definition 11 (Queries Diversity Score). Let 𝜇𝑖 be the mean and 𝜎𝑖
the standard deviation of a given distribution w.r.t. the 𝑖th feature of
the said distribution. The overall diversity score 𝐷𝑆 of the queries
is the average coefficient of variation of all the query features 𝑘



IJCKG ’2022, October 27–29, 2022, Hangzhou, China Saleem et al.

analyzed in the queries of benchmark 𝐵:

𝐷𝑆 =
1
𝑘

𝑘∑
𝑖=1

𝜎𝑖 (𝐵)
𝜇𝑖 (𝐵)

Finally, we assume that the reader is familiar with the notion of
projection variables.3

3 RELATEDWORK
The relatedwork in SPARQL querying benchmarking can be broadly
divided into two categories namely synthetic data and real-world
benchmarks.

3.1 Synthetic SPARQL Benchmarks
The Train Benchmark (TrainBench) [26] uses a data generator
that produces railway networks in increasing sizes and serializes
them in different formats, including RDF. The benchmark con-
tains a total of 16 SPARQL queries. A deeper analysis [23] of the
benchmarks shows that the queries included in this benchmark
are missing important SPARQL clauses such as DISTINCT, REGEX,
OPTIONAL, UNION, LIMIT, and ORDERBY. In addition, the diversity
score of the number of joins, join vertex degree, number of triple
patterns, the queries result sizes, triple patterns selectivities, join
and BGP-restricted triple patterns selectivities, number of BGPs,
and queries runtime are below the average value (across all bench-
marks included in the study [23]).
The Waterloo SPARQL Diversity Test Suite (WatDiv) [2] pro-
vides a synthetic data generator that produces RDF data with ad-
justable structuredness value. It makes use of the query templates
to generate SPARQL queries that can be used in the performance
evaluation. The queries are generated from different query tem-
plates. Currently, there are 50 queries templates available, divided
into three use-cases4 namely Basic Testing, Extensions to Basic Test-
ing, and Stress Testing. This benchmark only contains BGP queries
and hence missing the aforementioned important SPARQL clauses.
In addition, the diversity score of the number of projection vari-
ables, number of joins, join vertex degree, number of triple patterns,
the queries result sizes, triple patterns selectivities, join-restricted
triple patterns selectivities, number of BGPs, and query runtimes
are below the average value (across all benchmarks included in the
study [23]).
SP2Bench [24] is based on DBLP bibliographic database and mir-
rors vital characteristics such as power law distributions or Gauss-
ian curves. The benchmark includes a total of 14 queries. It makes
use of the majority of the aforementioned SPARQL clauses. How-
ever, the diversity score of the number of joins, queries result sizes,
the join vertex degree, triple patterns selectivities, join and BGP-
restricted triple patterns selectivities, number of BGPs, and query
runtimes are below the average value (across all benchmarks in-
cluded in the study [23])
The Berlin SPARQL Benchmark (BSBM) [8] is also based on
query templates to generate SPARQL queries for benchmarking.
The queries belong to multiple use cases such as explore, update,
and business intelligence. It contains a total of 20 query templates.
It also makes use of the majority of the aforementioned SPARQL
3See https://www.w3.org/TR/sparql11-query/#modProjection.
4WatDiv Tests: https://dsg.uwaterloo.ca/watdiv/#tests

clauses. However, the diversity score of the number of joins, queries
result sizes, the join vertex degree, triple patterns selectivities, BGP-
restricted triple patterns selectivities, number of BGPs, and query
runtimes are below the average value (across all benchmarks in-
cluded in the study [23]).
The Bowlogna [10] benchmark is based on the Bologna process. It
contains a total of 16 queries with a particular focus on analytical
and trend inquiries. The queries included in this benchmark are
missing important OPTIONAL and UNION clauses. In addition, the
diversity score of the number of projection variables, number of
joins, join vertex degree, number of triple patterns, the queries
result sizes, triple patterns selectivities, join and BGP-restricted
triple patterns selectivities, number of BGPs, and queries runtime
are below the average value (across all benchmarks included in the
study [23]).
The LDBC Social Network Benchmark (SNB) is based on so-
cial networking data and proposes two different types of queries
workloads for the same data: (1) the Interactive workload (SNB-
INT) queries are based on the person and its neighborhood. The
graph data continuously updated [12] in this workload, and (2) the
Business Intelligence workload (SNB-BI) focuses on the complex
queries with aggregates, collecting information from significant
portion of the graph. The data in this workload is static without
any updates. The SNB benchmark in total contains 21 queries. The
diversity score of the number of projection variables, number of
joins, join vertex degree, the queries result sizes, triple patterns
selectivities, join and BGP-restricted triple patterns selectivities,
number of BGPs, and queries runtime are below the average value
(across all benchmarks included in the study [23]).

3.2 Triplestore Benchmarks Using Real Data
FEASIBLE [19] is a benchmark generation framework from query
logs of SPARQL endpoints. The benchmarking utilizes a distance-
based clustering and the notion of most representative query selec-
tion from each cluster. FEASIBLE takes various important SPARQL
query features (such as result set sizes, total number of query triple
patterns, join vertices and mean join vertices degree) into con-
sideration when generating benchmarks. Currently, it only sup-
ports Virtuoso query logs that need to be pre-processed, cleaned
and stored in a separate file, which is used as input in the next
stage. FEASIBLE can generate benchmarks with varying numbers
of queries. It makes use of all aforementioned SPARQL clauses.
However, the queries result sizes, BGP-restricted triple patterns se-
lectivities, and queries runtime are below the average value (across
all benchmarks included in the study [23]). TheDBpedia SPARQL
Benchmark (DBPSB) [15] is also a cluster-based benchmark gen-
eration approach that generates benchmark queries from DBpedia
query logs. However, the clustering technique used in DBPSB is
different from FEASIBLE. It utilizes DBpedia data and real-world
queries templates collected from DBpedia public SPARQL endpoint.
It contains a total of 25 query templates. All of the query templates
contain DISTINCT SPARQL clause while missing important LIMIT
and ORDER BY clauses. In addition, the diversity score of the number
of projection variables, number of joins, the queries result sizes,
join vertex degree, the queries result sizes, triple patterns selec-
tivities, join and BGP-restricted triple patterns selectivities, and

https://www.w3.org/TR/sparql11-query/#modProjection
https://dsg.uwaterloo.ca/watdiv/#tests


𝜇-Bench: Real-world Micro Benchmarking for SPARQLQuery Processing over Knowledge Graphs IJCKG ’2022, October 27–29, 2022, Hangzhou, China

f1   f2  f3  f4

f1   f2  f3  f4

f1   f2  f3  f4

Queries selection   Vector representation Clusters formation   Final queries selection
Input queries

RDF Benchmark

Figure 2: Basic Architecture of the 𝜇-Bench

queries runtime are below the average value (across all benchmarks
included in the study [23]).
FishMark [6] is based on FishBase5 data which is provided both
in RDF and SQL versions. The queries are collected from the public
web-based application developed for FishBase. It contains a total
of 22 queries, which misses important SPARQL clauses such as
DISTINCT, LIMIT, FILTER, REGEX and ORDER BY. In addition, the
diversity score of the number of joins, the queries result sizes, join
vertex degree, the queries result sizes, triple patterns selectivities,
join and BGP-restricted triple patterns selectivities, and queries run-
time are below the average value (across all benchmarks included
in the study [23]).
BioBench [28] includes five, i.e., Cell, Allie, PDBJ, DDBJ, and
UniProt real-world biological datasets and their corresponding
queries in their benchmark. It makes use of all of the aforemen-
tioned SPARQL clauses. However, the diversity score of the number
of joins, the queries result sizes, join vertex degree, the queries re-
sult sizes, triple patterns selectivities, join and BGP-restricted triple
patterns selectivities, and queries runtime are below the average
value (across all benchmarks included in the study [23]).

4 THE 𝜇-BENCH APPROACH
Our benchmark creation problem is defined as follows:

Definition 12 (Benchmark Creation Problem). Let 𝐿 represent the
set of input queries. Our target is to obtain 𝑁 queries that are not
only the best representatives of 𝐿 but also contain more diverse
query features, with 𝑁 << |𝐿 |.

For benchmark creation, a set of input SPARQL queries, the
required number 𝑁 of queries and the selection criteria for mi-
crobenchmarking are provided by the user.

Figure 2 shows the general architecture of the proposed mi-
crobenchmarking framework dubbed 𝜇-Bench, which includes four
key components:(1) queries selection, (2) vector representation, (3)
clusters formation, and (4) final queries selection. In the subsequent
sections, we discuss these steps in detail.

4.1 Queries Selection
The 𝜇-Bench framework requires a set of SPARQL queries (either
synthetic or real-worl) to be provided as input. As mentioned before,

5FishBase: http://fishbase.org/search.php

the framework is directly compatible with the LSQ datasets6 and
user can only provide the LSQ SPARQL endpoint url7 as input.

The queries selection component selects all those input queries
which are according to the selection criteria (i.e., preferences for
the personalized benchmark) provided by the user. Our framework
completely abides by the semantic web and knowledge graphs prin-
ciples; the user can specify the selection criteria by using a single
SPARQL query. An example of such personalized query is shown
in Figure 1a, where the user specified the following criteria for the
desired microbenchmark: (1) the result size of the queries included
in the benchmark should be greater than 50, (2) the runtimes of
all the queries should be less than 50 seconds, (3) the number of
triple patterns included in the queries should be less than 10, and
(4) the number of projections variables should be either three or
the number of join vertices should be greater than two. Please note
that beside all the important SPARQL queries features discussed
in the previous section, LSQ also provides additional information
which can also be used to generate personalized microbenchmarks.
We encourage authors to have a look at LSQ schema for the details
of the all features included in the LSQ vocabulary8. At this stage,
a sample of the queries are selected from the given input set of
queries. The next step is to convert the selected queries into feature
vectors.

4.2 Vector Representation
We represent each SPARQL query as a multi-dimensional vector.
The same SPARQL query which was used for query selection in the
previous step is also used to get features (which are used in feature
vectors) pertaining to each selected query. The list of projection
variables represent the features to be used in vectors. For example,
the Figure 1a has five projection variables namely ?qID (query id):
(1) ?projVars (number of projection variables), (2) ?joinVertices
(number of join vertices), (3) ?tps (number of triple patterns), (4)
?rs (result size), and (5) ?meanJoinVertexDegree (mean join vertex
degree). In this example, each query will have a corresponding
feature vector with size five. The features values are already stored
in the LSQ dataset which is provided as input. For example, the
SPARQL query given in Figure 1a will have the following features
vector [7, 3, 9, 1000, 3], with 7 projection variables, 3 join vertices,
9 triple patterns, assuming the result size is 1000, and average join
6We recommend to use it with LSQ datasets, as it provides various information about
given SPARQL queries, which can be used to generate personalized benchmarks. It is
noteworthy that LSQ framework can be used to RDFize other queries logs or synthetic
SPARQL queries as well.
7LSQ endpoint: http://lsq.aksw.org/sparql
8LSQ vocabulary: https://github.com/AKSW/LSQ/blob/develop/LSQVocab_v2.ttl

http://fishbase.org/search.php
http://lsq.aksw.org/sparql
https://github.com/AKSW/LSQ/blob/develop/LSQVocab_v2.ttl


IJCKG ’2022, October 27–29, 2022, Hangzhou, China Saleem et al.

vertex degree equals 3. In order to make sure, the features with
very high values (e.g. 1000 in our example) do not bias the overall
selection of queries, we normalize all the values in a unit hypercube.
This normalization is done such that each of the individual values
in every feature vector is divided by the overall maximal value
(across all the vectors) for that query feature.

4.3 Clusters Formation
Given a set of normalized vectors, the next step is to generate the
required N clusters of the selected queries. To this end, we plot
all the normalized vectors in the multidimensional space and use
well-known distance-based clustering techniques to generate the
required number of N clusters. Currently, our framework supports
several distance-based clustering namely FEASIBLE [20], FEASIBLE
Exemplars [20], KMeans++, DBSCAN+KMeans++ (Combination
of DBSCAN and KMeans where DBSCAN remove outliers while
KMeans generate the required number of clusters), and Random
selection. Our framework is flexible enough to add more distance-
based clustering methods, which allow us to generate the required
N number of clusters. We encourage readers to have a look at the
corresponding papers for the details of these clustering methods.

4.4 Final Queries Selection
The last step is to only select a single most representative query
from each cluster of queries. This is done as follows: for each cluster,
first we find the centroid which is the average of the feature vectors
of all queries included in the given cluster. Once the centroid is
determined, we calculate the distance between each query included
in the given cluster to this centroid; a query that has the shortest
distance to the centroid is selected as the most representative query
of this cluster. After the selection of representative queries, they
are stored as an RDF file as the final benchmark output along with
a list of features associated with each query. This RDF output can
be queried directly using a SPARQL query.

5 EVALUATION AND RESULTS
In this section, we discuss the evaluation setup and evaluation re-
sults. We performed two types of experiments: (1) evaluation of
the diversity scores and the benchmark generation times of the
supported clustering methods, (2) performance evaluation of the
well-known triplestores using microbencharks generated by our
framework. The goal of the first experiment was to test the scala-
bility of the supported clustering methods by our framework and
to determine which of them generates the most diverse benchmark.
The purpose of the second experiment was not to determine the
fastest state-of-the-art triplestore, rather we want to show that
microbenchmarking can be helpful to perform more fine-grained
evaluation and hence pinpoint new insights.

5.1 Experimental Setup
Datasets In our evaluation, we want to perform experiments on
real-world datasets and queries. To this end, we selected four dif-
ferent real-world dataset namely DBpedia9, Side Effect Resource

9https://www.dbpedia.org/

(Sider10), Semantic Web Dog Food (SWDF11) and Linked Geo Data
(LGD12). We chose these datasets because: (1) they are from diverse
domains, (2) their real-world SPARQL queries are available from
LSQ, (3) they have varying structuredness and sizes.
Microbenchmarks For each of the above four datasets, we gen-
erate 6 different microbenchmarks with varying query sizes, i.e.,
10-queries, 25-queries, 50-queries, 100-queries, 500-queries and
1000-queries. We carefully chose these values to better show the
difference between the diversity scores of the supported clustering
methods by our framework.
Hardware and Software Configurations All experiments were
run on an Ubuntu-basedmachine with intel Xeon 2.10 GHz, 64 cores
and 512GB of RAM. For triplestores evaluation, we used IGUANA
[9], which is a novel SPARQL benchmark execution framework.
Triplestores We compared the performance of four – BlazeGraph,
Fuseki, GraphDB and Virtuoso – well-known triplestores using
the aforementioned microbenchmarks generated for four different
datasets. We chose these triplestores because they are sufficiently
scalable to the selected datasets, provide full support for SPARQL 1.1,
easy to configure, allow publishing their comparison results, free
to use, and used in previous evaluations [2, 14, 20]. We encourage
readers to have a look [1] for the details of existing triplestores
pertaining to storage and querying functionalities.
Performance Measures: We use the diversity score to compare
the diversity of the supported clustering techniques by our frame-
work. In addition, we used the benchmark generation time to com-
pare the scalability of the supported clustering techniques for the
problem in hand. To measure the performance of triple stores, we
use the standard Queries per Second (QpS).

5.2 Results
Diversity Score. Figure 3a to Figure 3d show the overall diversity
score of all six microbenchmarks for each of the datasets. As an
overall comparison, it has been observed that FEASIBLE-Exemplars
generates the most diverse benchmarks, followed by FEASIBLE,
KMeans++, DBSCAN+KMeans++, Random, respectively. The rea-
son for FEASIBLE-Exemplars high diversity is due to its clustering
method, which is based on selecting exemplars by using longest
distances from each other. Thus, features-wise, queries selected
by this clustering method are the most diverse from each other.
On the other hand, FEASIBLE and KMeans++ are centroid-based:
they calculate centroids and select samples, instead of selecting
samples based on the longest distances. The diversity score of DB-
SCAN+KMeans++ is lower than KMeans++. This is because the
removal of outliers (the most diverse queries) by DBSCAN reduced
the overall diversity score. The diversity of the random selection
is the lowest because it does not follow a particular method for
the selection of queries. Finally, we can see a general trend in de-
creasing the diversity score with the increasing number of queries
included in the benchmark. This is because with the increase in
number of queries, the standard deviation among the query features
is decreased and hence the overall diversity score is decreased.

10http://sideeffects.embl.de/
11http://www.scholarlydata.org/
12http://linkedgeodata.org/



𝜇-Bench: Real-world Micro Benchmarking for SPARQLQuery Processing over Knowledge Graphs IJCKG ’2022, October 27–29, 2022, Hangzhou, China

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 
QUERIES

25 
QUERIES

50 
QUERIES

100 
QUERIES

500 
QUERIES

1000 
QUERIES

DBSCAN+KMeans++ KMeans++

FEASIBLE FEASIBLE-Exemplars

Random

(a) SWDF Benchmarks Diversity Score

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 
QUERIES

25 
QUERIES

50 
QUERIES

100 
QUERIES

500 
QUERIES

1000 
QUERIES

DBSCAN+KMeans++ KMeans++

FEASIBLE FEASIBLE-Exemplars

Random

(b) DBpedia Benchmarks Diversity Score

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 
QUERIES

25 
QUERIES

50 
QUERIES

100 
QUERIES

500 
QUERIES

1000 
QUERIES

DBSCAN+KMeans++ KMeans++

FEASIBLE FEASIBLE-Exemplars

Random

(c) Sider Benchmarks Diversity Score

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

10 
QUERIES

25 
QUERIES

50 
QUERIES

100 
QUERIES

500 
QUERIES

1000 
QUERIES

DBSCAN+KMeans++ KMeans++

FEASIBLE FEASIBLE-Exemplars

Random

(d) LinkedGeoData Benchmarks Diversity Score

(e) SWDF Benchmarks Generation Time (f) DBpedia Benchmarks Generation Time

(g) Sider Benchmarks Generation Time (h) LinkedGeoData Benchmarks Generation Time

Figure 3: Benchmarks Diversity Scores and generation time (seconds) of all four datasets



IJCKG ’2022, October 27–29, 2022, Hangzhou, China Saleem et al.

(a) DBpedia (b) Sider

(c) SWDF (d) LinkedGeoData

Figure 4: Queries per Second (QpS) for the selected triplestores and datasets

Benchmark Generation Time. Figure 4a to Figure 4d show the
total time (in seconds) taken by selected clustering techniques to
generate all six benchmarks for each of the selected datasets. We
can clearly observe that FEASIBLE clustering takes the highest
time to generate benchmarks, followed by FEASIBLE-Exemplars,
KMeans++, DBSCAN+KMeans++ and Random. The reason for this
is due to the time complexity of these algorithms. The time com-
plexity of FEASIBLE is𝑂 (𝑑 |𝐿 |𝑁 ), where |L|is total number of input
queries, N is the required number of queries (equal to the number
of exemplars), and d is vector dimension (In our experiments, d
was 10). The time complexity of FEASIBLE-Exemplars is slightly
less than FEASIBLE. This is because (same like FEASIBLE) it only
calculates the exemplars, but does not perform the additional step
to select the most representative queries. The time complexity of
KMeans++ supported by our approach is 𝑂 (𝑡 ∗ 𝑁 ∗ |𝐿 |), where t
is the number of iterations (set to 7 in our experiments). The time
taken by DBSCAN+KMeans++ is less than KMeans++ because the
DBSCAN clustering removed many outliers and hence the total
number of input queries (i.e., N) were reduced. Finally, we can
observe that although both FEASIBLE and FEASIBLE-exemplars
generate the most diverse benchmarks, they might not be very
scalable to hundreds of millions of input queries. In our experi-
ments, we obtained the number of input queries from LSQ endpoint
as follows: 4,258,941 queries from DBpedia, 277,766 from SWDF,
61,897 queries from LGD, and 47,423 from Sider. The benchmark
generation time also reflects that the highest time is needed for
DBpedia, followed by SDF, LGD, and Sider, respectively.
Performance of Triplestores. To measure the performance of
triplestores, we used 1000 queries microbenchmark from DBpedia,
500 queries microbenchmark from Sider, 100 queries microbench-
mark SWDF and 50 queries microbenchmark from LinkedGeoData.
Figure 4 shows the evaluation results for these microbenchmarks.

For DBpedia, Virtuoso is the fastest triplestore, followed by Blaze-
graph, GraphDB, and Fuseki, respectively. For Sider, Blazegraph
is the fastest triplestore, followed by GraphDB, Fuseki, and Virtu-
oso, respectively. For SWD, Blazegraph is the fastest triplestore,
followed by GraphDB, Virtuoso, and FUSEKI, respectively. Finally,
for LGD, Blazegraph is the fastest triplestore, followed by GraphDB,
Fuseki, and Virtuoso, respectively. The results clearly suggest that
the ranking of the triplestores can be changed by using different
microbenchmarks from different datasets.

6 CONCLUSION
In this paper, we presented a microbenchmarking framework for
RDF knowledge graphs. The framework is directly compatible with
LSQ datasets and hence users need not to prepare the set of input
queries along with the required query features. The framework
provides various clustering methods to generate microbenchmarks.
The evaluation result suggests that FEASIBLE-exemplars generates
the most diverse benchmarks. However, it may need more powerful
hardware to generate microbenchmarks when the input queries
are possibly in billions. The evaluation result also suggested that
the performance ranking of the triplestores changes with different
microbenchmarks, hence microbenchmarking could be helpful to
perform a fine-grained evaluation of triplestores.

In the future, we want to perform more extensive experiments
to test the scalability of the proposed approach.

ACKNOWLEDGMENTS
This work was partially supported by the German Federal Ministry
of Education and Research (BMBF) within the EuroStars project
E!114681 3DFed under the grant no 01QE2114, project RAKI (01MD19012D)
and project KnowGraphs (No 860801).



𝜇-Bench: Real-world Micro Benchmarking for SPARQLQuery Processing over Knowledge Graphs IJCKG ’2022, October 27–29, 2022, Hangzhou, China

REFERENCES
[1] Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga

Ngomo. 2021. A survey of RDF stores & SPARQL engines for querying knowledge
graphs. The VLDB Journal (2021), 1–26.

[2] Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. 2014. Di-
versified Stress Testing of RDF Data Management Systems. In ISWC. 197–212.
https://doi.org/10.1007/978-3-319-11964-9_13

[3] Marcelo Arenas, Claudio Gutiérrez, and Jorge Pérez. 2009. On the Semantics of
SPARQL. In Semantic Web Information Management - A Model-Based Perspective.
Springer, 281–307. https://doi.org/10.1007/978-3-642-04329-1_13

[4] Marcelo Arenas and Jorge Pérez. 2012. Federation and Navigation in SPARQL 1.1.
Springer.

[5] Sören Auer, Jens Lehmann, and SebastianHellmann. 2009. Linkedgeodata: Adding
a spatial dimension to the web of data. In International Semantic Web Conference.
Springer, 731–746.

[6] Samantha Bail, Sandra Alkiviadous, Bijan Parsia, David Workman, Mark van
Harmelen, Rafael S. Gonçalves, and Cristina Garilao. 2012. FishMark: A Linked
Data Application Benchmark. In Proceedings of the Joint Workshop on Scalable
and High-Performance Semantic Web Systems. 1–15. http://ceur-ws.org/Vol-
943/SSWS_HPCSW2012_paper1.pdf

[7] Luigi Bellomarini, Emanuel Sallinger, and Sahar Vahdati. 2020. Knowledge graphs:
the layered perspective. In Knowledge Graphs and Big Data Processing. Springer,
Cham, 20–34.

[8] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL Benchmark. Int. J.
Semantic Web Inf. Syst. 5, 2 (2009), 1–24. https://doi.org/10.4018/jswis.2009040101

[9] Felix Conrads, Jens Lehmann, Muhammad Saleem, Mohamed Morsey, and Axel-
Cyrille Ngonga Ngomo. 2017. IGUANA: A Generic Framework for Benchmarking
the Read-Write Performance of Triple Stores. In ISWC. Springer, 48–65. https:
//doi.org/10.1007/978-3-319-68204-4_5

[10] Gianluca Demartini, Iliya Enchev, MarcinWylot, Joël Gapany, and Philippe Cudré-
Mauroux. 2011. BowlognaBench - Benchmarking RDF Analytics. In Data-Driven
Process Discovery and Analysis SIMPDA. Springer, 82–102. https://doi.org/10.
1007/978-3-642-34044-4_5

[11] Anastasia Dimou, Sahar Vahdati, Angelo Di Iorio, Christoph Lange, Ruben Ver-
borgh, and Erik Mannens. 2017. Challenges as enablers for high quality Linked
Data: insights from the Semantic Publishing Challenge. PeerJ Computer Science 3
(2017), e105.

[12] Orri Erling, Alex Averbuch, Josep-Lluis Larriba-Pey, Hassan Chafi, Andrey Gu-
bichev, Arnau Prat-Pérez, Minh-Duc Pham, and Peter A. Boncz. 2015. The LDBC
Social Network Benchmark: Interactive Workload. In SIGMOD. ACM, 619–630.
https://doi.org/10.1145/2723372.2742786

[13] Olaf Görlitz, Matthias Thimm, and Steffen Staab. 2012. SPLODGE: Systematic
Generation of SPARQL Benchmark Queries for Linked Open Data. In ISWC.
Springer, 116–132. https://doi.org/10.1007/978-3-642-35176-1_8

[14] Manzoor Ali HashimKhan, Axel-Cyrille Ngonga Ngomo, andMuhammad Saleem.
2021. When is the Peak Performance Reached? An Analysis of RDF Triple Stores.
In Further with Knowledge Graphs: Proceedings of the 17th International Conference
on Semantic Systems, 6-9 September 2021, Amsterdam, The Netherlands, Vol. 53.
IOS Press, 154.

[15] Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo.
2011. DBpedia SPARQL Benchmark - Performance Assessment with Real Queries
on Real Data. In ISWC. Springer, 454–469. https://doi.org/10.1007/978-3-642-
25073-6_29

[16] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood, and
Axel-Cyrille Ngonga Ngomo. 2015. LSQ: The Linked SPARQL Queries Dataset.
In ISWC. Springer, 261–269. https://doi.org/10.1007/978-3-319-25010-6_15

[17] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. 2018. Larg-
eRDFBench: A billion triples benchmark for SPARQL endpoint federation. J. Web
Sem. 48 (2018), 85–125. https://doi.org/10.1016/j.websem.2017.12.005

[18] Muhammad Saleem, Maulik R. Kamdar, Aftab Iqbal, Shanmukha Sampath, He-
lena F. Deus, and Axel-Cyrille Ngonga Ngomo. 2014. Big linked cancer data:
Integrating linked TCGA and PubMed. Journal of Web Semantics 27-28 (2014),
34–41. https://doi.org/10.1016/j.websem.2014.07.004 Semantic Web Challenge
2013.

[19] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.
FEASIBLE: a feature-based SPARQL benchmark generation framework. In ISWC.
Springer, 52–69.

[20] Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2015.
Feasible: A feature-based sparql benchmark generation framework. In Interna-
tional Semantic Web Conference. Springer, 52–69.

[21] Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-
Cyrille Ngonga Ngomo. 2018. CostFed: Cost-Based Query Optimization for
SPARQL Endpoint Federation. In SEMANTICS (Procedia Computer Science,
Vol. 137). Elsevier, 163–174. https://doi.org/10.1016/j.procs.2018.09.016

[22] Muhammad Saleem, Claus Stadler, Qaiser Mehmood, Jens Lehmann, and Axel-
Cyrille Ngonga Ngomo. 2017. SQCFramework: SPARQL Query Containment
Benchmark Generation Framework. In K-CAP. 28:1–28:8. https://doi.org/10.
1145/3148011.3148017

[23] Muhammad Saleem, Gábor Szárnyas, Felix Conrads, Syed Ahmad Chan Bukhari,
Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. 2019. How representative
is a sparql benchmark? an analysis of rdf triplestore benchmarks. In The World
Wide Web Conference. 1623–1633.

[24] Michael Schmidt et al. 2009. SP2Bench: A SPARQL Performance Benchmark.
In Semantic Web Information Management - A Model-Based Perspective. 371–393.
https://doi.org/10.1007/978-3-642-04329-1_16

[25] Claus Stadlera, Muhammad Saleema, Qaiser Mehmoodb, Carlos Buil-Arandac,
Michel Dumontierd, Aidan Hogane, and Axel-Cyrille Ngonga Ngomoa. 2022.
LSQ 2.0: A Linked Dataset of SPARQL Query Logs. Semantic Web Journal (2022).

[26] Gábor Szárnyas, Benedek Izsó, István Ráth, and Dániel Varró. 2018. The Train
Benchmark: Cross-technology performance evaluation of continuous model
queries. Softw. Syst. Model. 17, 4 (2018), 1365–1393. https://doi.org/10.1007/s10270-
016-0571-8

[27] Gábor Szárnyas, Arnau Prat-Pérez, Alex Averbuch, József Marton, Marcus
Paradies, Moritz Kaufmann, Orri Erling, Peter A. Boncz, Vlad Haprian, and
János Benjamin Antal. 2018. An early look at the LDBC Social Network Bench-
mark’s Business Intelligence workload. In GRADES-NDA at SIGMOD. ACM,
9:1–9:11. https://doi.org/10.1145/3210259.3210268

[28] Hongyan Wu et al. 2014. BioBenchmark Toyama 2012: An evaluation of the
performance of triple stores on biological data. J. Biomedical Semantics 5 (2014),
32. https://doi.org/10.1186/2041-1480-5-32

https://doi.org/10.1007/978-3-319-11964-9_13
https://doi.org/10.1007/978-3-642-04329-1_13
http://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
http://ceur-ws.org/Vol-943/SSWS_HPCSW2012_paper1.pdf
https://doi.org/10.4018/jswis.2009040101
https://doi.org/10.1007/978-3-319-68204-4_5
https://doi.org/10.1007/978-3-319-68204-4_5
https://doi.org/10.1007/978-3-642-34044-4_5
https://doi.org/10.1007/978-3-642-34044-4_5
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1007/978-3-642-35176-1_8
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1007/978-3-642-25073-6_29
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1016/j.websem.2017.12.005
https://doi.org/10.1016/j.websem.2014.07.004
https://doi.org/10.1016/j.procs.2018.09.016
https://doi.org/10.1145/3148011.3148017
https://doi.org/10.1145/3148011.3148017
https://doi.org/10.1007/978-3-642-04329-1_16
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1007/s10270-016-0571-8
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1186/2041-1480-5-32

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Synthetic SPARQL Benchmarks
	3.2 Triplestore Benchmarks Using Real Data

	4 The -Bench Approach 
	4.1 Queries Selection
	4.2 Vector Representation
	4.3 Clusters Formation
	4.4 Final Queries Selection

	5 Evaluation and Results
	5.1 Experimental Setup
	5.2 Results

	6 Conclusion
	Acknowledgments
	References

