
Ontology-based Data Federation
Zhenzhen Gu

Free University of Bozen-Bolzano
Bolzano, Italy

Davide Lanti
Free University of Bozen-Bolzano

Bolzano, Italy

Alessandro Mosca
Free University of Bozen-Bolzano

Bolzano, Italy

Guohui Xiao
University of Bergen
Bergen, Norway
University of Oslo
Oslo, Norway
Ontopic S.r.l.
Bolzano, Italy

Jing Xiong
Free University of Bozen-Bolzano

Bolzano, Italy

Diego Calvanese
Free University of Bozen-Bolzano

Bolzano, Italy
Umeå University
Umeå, Sweden
Ontopic S.r.l.
Bolzano, Italy

ABSTRACT
Ontology-based data access (OBDA) is a well-established approach
to information management which facilitates the access to a (sin-
gle) relational data source through the mediation of a high-level
ontology, and the use of a declarative mapping linking the data
layer to the ontology. We formally introduce here the notion of
ontology-based data federation (OBDF) to denote a framework that
combines OBDA with a data federation layer where multiple, pos-
sibly heterogeneous sources are virtually exposed as a single rela-
tional database. We discuss opportunities and challenges of OBDF,
and provide techniques to deliver efficient query answering in an
OBDF setting. Such techniques are validated through an extensive
experimental evaluation based on the Berlin SPARQL Benchmark.

CCS CONCEPTS
• Information systems→ Data federation tools.

KEYWORDS
OBDA, Data federation, Query optimization

ACM Reference Format:
Zhenzhen Gu, Davide Lanti, Alessandro Mosca, Guohui Xiao, Jing Xiong,
and Diego Calvanese. 2022. Ontology-based Data Federation. In Proceedings
of The 11th International Joint Conference on Knowledge Graphs (IJCKG 2022).
ACM, New York, NY, USA, 10 pages. https://doi.org/XX.XX

1 INTRODUCTION
Ontology-based data access (OBDA) [10, 33, 42] is a well-established
paradigm for querying data sources via a mediating ontology that
has been successfully applied in many different domains [43]. In
OBDA, the ontology is expressed in a lightweight conceptual lan-
guage, such as OWL 2QL [30], which has its formal foundations in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IJCKG 2022, October 27–29, 2022, Hangzhou, China
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XX.XX

the description logics of the DL-Lite family [12]. Typically, it is as-
sumed that the underlying data are stored in a single relational data
source, to which the ontology elements are mapped in a declarative
way. Specifically, in each mapping, a SQL query over the source is
mapped to a class / property of the ontology, specifying how the
data retrieved from the database (DB) should be used to create
instances and values that populate the class / property.

Notably, for query answering, OBDA follows a virtual approach,
i.e., the data are not actually extracted from the source to populate
the classes and properties, but instead a SPARQL query posed over
the ontology is transformed on-the-fly into a SQL query over the
data source. Such transformation takes into account both the ontol-
ogy axioms (in what is generally called a rewriting step [12]) and the
mappings (in an unfolding step [33, 34]), and typically may lead to a
substantial blow-up in the size of the resulting SQL query w.r.t. the
size of the original query. Due to this, sophisticated optimization
techniques have been proposed and implemented in commercial
and open source OBDA systems [10, 11, 38, 45]. Such techniques ex-
ploit the available information about constraints in the data source
(e.g., primary and foreign keys), the form of the mappings, and the
structure of the query in order to optimize the SPARQL-to-SQL
query translation process and generate a final query that is not
only as compact as possible but also efficient to execute [34, 44].

So far, such techniques have been tailored towards optimizing
queries that are executed over a single data source to which the
OBDA system is mapped. In many settings, however, there is the
need to virtually access multiple, possibly heterogeneous, data
sources in an integrated way. In this case, one can resort to data
federation [20, 39], where multiple autonomous data sources are
exposed transparently as a unified federated relational schema,
usually called virtual database. Data federation is an active research
area which has been extensively studied over the years, and many
mature and highly-optimized data federation tools are currently
available, both in the database community and in the Semantic Web
community [19].

Data federation tools can be naturally used in combination with
OBDA systems, by accessing them as if they were a single relational
data source1. However, to the best of our knowledge, in current
OBDA systems no provision is taken for the optimization of the
generated SQL query to account for the fact that the evaluation of

1See, e.g., https://ontop-vkg.org/tutorial/federation/.

https://doi.org/XX.XX
https://doi.org/XX.XX
https://ontop-vkg.org/tutorial/federation/

IJCKG 2022, October 27–29, 2022, Hangzhou, China Gu et al.

a SQL query in a data federation system is fundamentally different
from query evaluation by a standard relational DBMS engine. In this
work, we consider specifically this issue and provide the following
contributions to this novel setting that we call Ontology-based Data
Federation (OBDF for short):
• We provide a formalization of OBDF systems, where a col-
lection of multiple, possibly heterogeneous, federated data
sources are accessed via mappings from an ontology (which
captures the domain vocabulary and domain knowledge).
• We study the problem of query optimization in OBDF, by
devising a set of optimization techniques specifically tailored
towards federated data sources.
• We carry out an experimental evaluation over an adapta-
tion of the Berlin SPARQL Benchmark (BSBM) [5] to the
federation setting, in which we assess the effectiveness of
the proposed optimization techniques.

2 PRELIMINARIES
We introduce technical preliminaries and notation that we will
adopt throughout the remainder of this paper.

Relational Algebra. We assume the reader to be familiar with
fundamental notions of relational algebra. As conventions, we use
Σ to denote a (relational)DB schema,𝐷 to denote an instance of a DB
schema, and sig(A) to denote the signature of a relational algebra
expression A, which consists of the tuple (a1, . . . , an) of attributes of
the relation generated by A. When we want to make the signature
explicit, we use the notation A(a1, . . . , an). We introduce the ab-
breviation 𝜋r1/a1,...,rk/ak for the combination 𝜌r1/a1,...,rk/ak𝜋a1,...,ak
of projection and renaming, ∅𝑅 to denote the empty relation of signa-
ture sig(𝑅), and Ω𝑅 to denote a tuple of null values with signature
sig(𝑅). Given a database instance 𝐷 of Σ and an algebra expression
A, ans(A, 𝐷) denotes the set of answers of A over 𝐷 . Given two ex-
pressions A and B over Σ, A is contained in B, denoted as A ⊆ B, if
ans(A, 𝐷) ⊆ ans(B, 𝐷) for every DB instance 𝐷 of Σ. A and B are
equivalent, denoted as A ≡ B, if A ⊆ B and B ⊆ A.

Ontology-based Data Access (OBDA). We rely here on the classic
framework from [42]. Due to space limitations, we assume the
reader to be familiar with ontologies and Description Logics notation,
and refer to the extensive literature on the subject [4].

An OBDA specification O is a triple (T ,M, Σ), where T is an
ontology consisting of class inclusion axioms 𝐵 ⊑ 𝐶 and role inclusion
axioms 𝑆 ⊑ 𝑇 ; Σ is a relational DB schema; andM is a set of OBDA-
mappings of the form A⇝ 𝐶 (f (a)) or A⇝ 𝑃 (f (a), g(b)), where A
is a relational algebra expression over Σ, 𝐶 and 𝑃 are respectively
a class and a property name of T , and f (a) and g(b) are (R2RML)
IRI templates [14], specifying how DB values are transformed into
IRIs and RDF literals, respectively making use of the sets a and b
of attributes in sig(A). We call A the source part and 𝐶 (f (a) (resp.,
𝑃 (f (a), g(b))) the target part of the mapping. An OBDA instance is
a pair (O, 𝐷), where 𝐷 is a DB instance of Σ.

For the semantics of an OBDA instance, we refer to [33]. Intu-
itively, an OBDA instance exposes a (virtual) RDF graph that can
be queried through SPARQL [22]. The graph is virtual in the sense
that RDF triples are not materialized. Instead, to answer a SPARQL

query, the query is translated on-the-fly into an equivalent SQL
query over the database, called its translation.

Unfolding. In OBDA, the process of producing a SQL transla-
tion 𝑞 for a SPARQL query𝑄 over an OBDA specification (T ,M, Σ)
is called unfolding [33]. Different unfolding procedures have been
proposed in the literature. For this work, we focus on two variants:
the classical one aiming at producing a union of conjunctive queries
(UCQ) [33], and the one aiming at producing a join of union of con-
junctive queries (JUCQ) [7, 27]. One can switch from one variant to
another by applying algebra transformations, specifically by push-
ing the joins at the bottom of the algebra-tree (UCQ) or the unions
(JUCQ) through the distributive rule. We describe here the JUCQ
variant, which we call unfoldwrap, by means of an example. As we
will see in Section 5, unfoldwrap provides the basis for the unfolding
algorithm in our federated setting. Consider the following SPARQL
query, asking for information about stars:

SELECT ?s ?mag WHERE { ?s rdf:type :Star; :hasMagnitude ?mag . }

The query above corresponds to the following SPARQL algebra tree:

PROJECT

JOIN

?s rdf:type :Star . ?s :hasMagnitude ?mag .

Assume the following mappings over a DB, providing SQL defi-
nitions for the class :Star and the data property :hasMagnitude.

SELECT id FROM dwarf_star ⇝ :star/{id} rdf:type :Star .
SELECT id FROM giant_star ⇝ :star/{id} rdf:type :Star .
SELECT id,mag FROM star_data ⇝ :star/{id} :hasMagnitude {mag} .

The unfoldwrap algorithm traverses the algebra tree in a bottom-
up fashion. It starts by replacing each leaf of the tree, that is, a triple
pattern of the form (𝑠, 𝑝, 𝑜), with the union of the corresponding
SQL definitions in the mappings. In this step, the algorithm includes
in the SQL query a function (usually implemented as string concate-
nation) which constructs the IRIs for 𝑠 and 𝑜 as specified by the IRI
templates in the mappings. Once it finishes processing the leaves,
the algorithm continues to the upper levels in the tree, where the
SPARQL operators (PROJECT, JOIN, OPTIONAL, UNION, and FIL-
TER) are translated into the corresponding SQL operators (Project,
InnerJoin, LeftJoin, Union, and Filter, respectively). Once the root
is translated, we have obtained an intermediate SQL query that is
already a (non-optimized) translation. For our example:

PROJECT

JOINSELECT CONCAT(‘:star/’,id)
FROM dwarf_star
UNION
SELECT CONCAT(‘:star/’,id)
FROM giant_star .

SELECT CONCAT(‘:star/’,id), mag
FROM star_data

At this point, a crucial optimization takes place, which leads to
the creation of a proper JUCQ unfolding: the applications of the
IRI templates (i.e., the CONCAT operations) are pushed as high as
possible in the algebra tree. This allows the database to perform
joins over (possibly, indexed) database values, rather than over
the results of string concatenation. Without delving into technical
details, during this phase the algebra tree might undergo some
structural transformations: if a JOIN node is found in which the
join condition equates two IRIs that are necessarily different (being

Ontology-based Data Federation IJCKG 2022, October 27–29, 2022, Hangzhou, China

the result of CONCAT operations that lead to different results, e.g.,
because of different prefixes), then that join is trivially empty and
gets eliminated from the algebra tree.

In our example, at the end of the unfolding procedure unfoldwrap
we obtain the following query (expressed in relational algebra):
𝜋f:star (id),mag (𝜋id (dwarf_star∪ giant_star) Zid=id1 𝜋id1/id,mag (star_data))

where f:star (id) denotes the application of the IRI template
CONCAT(’:star/’,id).

Data Federation. Federating multiple, possibly heterogeneous
data sources consists in exposing a unified view of such sources,
usually called virtual database (VDB). In this paper, a data source,
denoted by 𝑆 , can be an RDB, a NoSQL DB, or of some other type.
Consider a set S = {𝑆1, . . . , 𝑆𝑛} of sources to be federated, and a
function (given implicitly with S) transforming the (possibly, non-
relational) schema of each source 𝑆𝑖 into a corresponding relational
schema Σ𝑖 . Then, the federated VDB schema (for S) is the disjoint
union ΣS =

⋃𝑛
𝑖=1 Σ𝑖 . In the following, we use letters𝑇,𝑈 to denote

database tables, and the subscript 𝑖 (e.g.,𝑇𝑖) to indicate that 𝑆𝑖 is the
source of table𝑇 . Additionally, given an arbitrary relational algebra
expression A, src(A) denotes the set of sources of the atoms in A,
and occ(𝑆𝑖 ,A) denotes the total number of occurrences in A of rela-
tions from 𝑆𝑖 . A data federation instance D for ΣS is the relational
instance

⋃
𝑖 𝐷𝑖 made of the union of all instances of the (relational)

source schemas in ΣS. Hence, given a query 𝑞, ans(𝑞,D) denotes
the set of answers of 𝑞 evaluated over the federation instance D.

Data Federation vs Data Integration. Real-world data federation
systems often provide data integration capabilities, allowing users
to specify an arbitrary VDB schema integrating the schemas of
the various sources. The link between such a VDB schema and
the schemas of the sources is realized through GAV, LAV, or GLAV
mappings [15]. In this work, we always assume a federated VDB
schema. The reason is that, in our setting, the integration is per-
formed at the level of the ontology, by exploiting the definitions
provided in the OBDA mappings (that can be interpreted, in fact,
as GAV mappings coming from the context of data integration).

Local Operations vs Federated Operations. To compute the an-
swers for a federated query, a data federation system can delegate
operations (e.g., joins and unions) to the data sources, or perform
the operations itself. In this paper, we distinguish between local
operations (e.g., joins performed within a data source) and feder-
ated operations (e.g., joins across multiple sources, that have to be
handled at the level of the federation system).

3 ONTOLOGY-BASED DATA FEDERATION
Our first contribution is the definition of a general framework for
enriching OBDA with data federation capabilities.

Definition 3.1 (OBDF). Given an ontology T , a federated VDB
schema ΣS, and a setM of mappings from ΣS to T , an ontology-
based data federation (OBDF) specification is the OBDA specification
F = (T ,M,ΣS).

Hence, the notions of OBDF instance and answers to a query over
an OBDF instance coincide with their OBDA counterpart. Figure 1
depicts the full process of query answering in an OBDF scenario.
A federation engine (e.g., Teiid, Denodo, or Dremio) is responsible

M

T
V
D
B

…

SPARQL Q

Answers

SQL q

answers

sub-
queries

sub-
answers

OBDA SYSTEM
DATA FEDERATION

SYSTEM

DATA SOURCES

Figure 1: OBDF framework and query answering procedure.

for the federation of the data sources, and an OBDA system, in
this case Ontop, interacts with the federation engine as it would
normally do with a single relational database.

Opportunities and Challenges. In line with the FAIR principles2,
OBDA allows users to publish data according while complying to
shared, agreed-upon vocabularies which enable interoperability
between different applications. Furthermore, the ontology consti-
tutes both a documentation about the data and a basis for enabling
reasoning-based services, such as query answering w.r.t. the on-
tology. The added value of data federation is to extend the OBDA
paradigm to multiple, possibly non-relational sources.

While benefiting from both OBDA and data federation, OBDF
combines the challenges of both. Next example shows possible
issues that might arise from a naive implementation of OBDF.

Example 3.2. Consider an enterprise, whose data is spread across
different sources S = {𝑆1, . . . , 𝑆4} that need to be integrated. Con-
sider an OBDF specification F = (T ,M,ΣS), with T andM as
in Figure 2, where each relation inM has a subscript 𝑖 denoting
the source 𝑆𝑖 relative to that relation. For the SPARQL query 𝑄

in Figure 2, asking for products’ and inspectors’ information, the
unfolding procedure would produce the SQL query 𝑞 from the same
figure. Observe that this query is already verbose, with 3 federated
joins and 4 federated unions across the different sources. At this
point, state-of-the-art OBDA systems typically apply structural
optimizations transforming the JUCQ 𝑞 into a UCQ, by pushing
the join operators at the bottom level of the algebra tree. After this
transformation, the reader can easily verify that the query obtained
would consists of 24 = 16 unions of CQs, where each CQ has 3 join
operators, thus amounting to 48 joins in total. Hence, transform-
ing JUCQs into UCQs blindly can largely increase the number of
federated, thus inefficient, operations.

To complicate the picture, it is often the case that certain rela-
tions hold across the different sources: for instance, relation PerInfo
might contain the names of all the employees in the enterprise, ren-
dering the last union in 𝑞 redundant. Similarly, the intersection of
ConvenienceGoods and ShoppingGoods might be empty, render-
ing all joins between these two relations empty as well.

In the remainder of this work we discuss a novel unfolding
procedure specific to the OBDF setting, able to choose the best
strategy between UCQ and JUCQ unfoldings and to exploit relations
holding across different data sources.

2https://www.go-fair.org/fair-principles/

IJCKG 2022, October 27–29, 2022, Hangzhou, China Gu et al.

T:ConvenienceGood ⊑ :Product
:ShoppingGood⊑ :Product

𝜋!"#(CG1) ⇝ :ConvenienceGood(f(cid))
𝜋!"#, !%&'((CG1) ⇝ :prodName(f(cid), g(cname))
𝜋!"#, !"%)*(CG1) ⇝ :hasInspector(f(cid), h(𝑐𝑖𝑛sp))
𝜋)"#(SG2) ⇝ :ShoppingGood(f(sid))
𝜋)"#,)%&'((SG2) ⇝ :prodName(f(sid), g(sname))
𝜋)"#,)"%)*(SGs2) ⇝ :hasInspector(f(sid), h(sinsp))
𝜋*""#, *"%&'((PerInfo3) ⇝ :hasName(h(piid), e(piname))
𝜋("#, (%&'((Employee4) ⇝ :hasName(h(eid), e(ename))

M

𝜋+("), .(%), /(0), ((*%) (
(𝜋"/!"# (CG1) ∪ 𝜋"/)"# (SG2))⋈+(")2+("3)
(𝜋"3/!"#,%/!%&'((CG1) ∪ 𝜋"3/)"#,%/)%&'((SG2)) ⋈+("3)2+("4)
(𝜋"4/!"#,0/!"%)* (CG1) ∪ 𝜋"4/)"#,0/)"%)*(SG2))⋈+(0)2+(*")
(𝜋*"/*""#,*%/*"%&'((PerInfo3) ∪ 𝜋*"/("#,*%/(%&'((Employee4)))

SELECT * WHERE {
?x a :Product; :prodName ?y; :hasInspector ?z .
?z :hasName ?n }

Q

Unfolding

q

Figure 2: An example of unfolding SPARQL query into SQL query w.r.t. the ontology T and mapping setM.

4 DATA HINTS
Under the standard formalization of OBDA [33], in which every
IRI template behaves like an injective R2RML template, the assump-
tion that the ontology language used is OWL 2QL, and that query
answering is performed under the SPARQL 1.1 entailment regime,
it is possible to determine a-priori all the joins between relations
that can occur in the SQL translation of a user query [27]. This
can be done by an offline analysis of the OBDA specification, that
is, by collecting pairs of atoms with compatible templates. In [27],
such intuition is used to collect specific statistics about the OBDA
instance, with the goal of improving the performance of query an-
swering. We adopt here a similar approach, by introducing different
kinds of meta-information, called data hints (or, simply, hints), that
we use to optimize query answering in OBDF.

We identify three kinds of hints: empty federated joins, contain-
ment redundancy, and materialized views. The first kind of hint,
empty federated join, annotates which joins are expected to be
empty when evaluated over the current data federation instance.
For the definitions in this section, we assume a fixed federated VDB
schema ΣS.

Definition 4.1 (Hint 1: Empty Federated Join). Given an instanceD
ofΣS and a federated join expression FJ overΣS, we say that FJ is an
empty federated join w.r.t. D, denoted as FJ =D ∅, if ans(FJ,D) = ∅.

The second kind of hint, containment redundancy, annotates the
presence of redundancy (typically across different data sources).

Definition 4.2 (Hint 2: Containment Redundancy). Given an in-
stance D of ΣS and two expressions A and B over ΣS, we say that A
is data-contained in B, denoted as A ⊆D B, if ans(A,D) ⊆ ans(B,D).
We use A ≡D B to indicate that A ⊆D B and B ⊆D A.

Materialized views [1, 21] can improve the overall performance
of query answering. The ability to specify materialized views is
provided by a few data federation systems, such as Teiid or Dremio.
In our formalization, we assume the presence of an extra source to
store the materialization of the views, where such source could be
the federation system itself. This is motivated by the fact that it is
often impossible or impractical to store the views directly in the
sources, due to access policies, source ownership, etc.

Definition 4.3 (Hint 3: VDB Schema with Views). LetM be a set
of view definitions. We denote by ΣM

S the VDB schema ΣS ∪ ΣM,
where ΣM is the relational schema of a special data source 𝑆M

materializing the views defined inM.

Consequently, an instance DM of ΣM
S is a VDB instance D∪𝐷M

such that D is an instance of ΣS and 𝐷M is an instance of ΣM
conforming to the view definitions inM.

Finally, we assume two labeling functions: the first one charac-
terizes whether a source is efficient or inefficient when answering
queries, whereas the second one characterizes whether the data
source is dynamic (i.e., its content is expected to change frequently),
or static (i.e., its content is not expected to change).

5 QUERY OPTIMIZATION IN OBDF
We now discuss our solution to optimize SQL translations of
SPARQL queries posed over an OBDF system. The main intuition
is that, in OBDF, the ontology and mappings contain information
to guide the discovery of the data hints discussed in the previous
section. The overall method consists of two parts: 1) an offline hints
pre-computation part, and 2) an on-line translation optimization
part. For the remainder of this section, we assume a fixed OBDF
specification F = (T ,M,ΣS).

5.1 Pre-Computation of Hints
We exploit the mappings and the ontology in an OBDF specification
to guide the gathering of hints. Basically, we will enumerate in
advance all possible SQL joins and unions between pairs of relations
that the system can possibly produce during the unfolding.

Analyzing the mappings. We start by showing how the analy-
sis is carried out for joins. Trivially, join conditions appearing in
the source part of mapping assertions give an indication on what
columns of the DB can be joined. Other joins are the result of the
translation of a SPARQL join into a SQL join. As proposed in [27, 28],
in order to determine these we can analyze the IRI templates ap-
pearing in the mapping, and pre-compute all pairs of compatible
templates (i.e., templates that generate the same IRI for some DB
instance). For instance, consider the following mapping assertions:

m1 : T1 (𝑎) ⇝ 𝐴(f (𝑎)), m2 : T2 (𝑏, 𝑐) ⇝ 𝑃 (f (𝑏), g(𝑐))
m3 : T3 (𝑑, 𝑒) ⇝ 𝑃 (h(𝑑), i(𝑒))

and the SPARQL query SELECT ?x ?y WHERE {?x a A; P ?y}, re-
trieving 𝐴-individuals and their 𝑃-successors. During unfoldwrap
execution, we reach the following intermediate translation:
(𝜋f (𝑎),g(𝑐) (T1 (𝑎) Zf (𝑎)=f (𝑏) T2 (𝑏, 𝑐))) ∪ (𝜋f (𝑎),i(𝑒) (T1 (𝑎) Zf (𝑎)=h(𝑑) T3 (𝑑, 𝑒)))

Note that the second join expression can only be empty, since the
join condition f (𝑎) = h(𝑑) can never be satisfied for any instanti-
ation of 𝑎 and 𝑑 . Hence, unfoldwrap will remove this empty join,
simplify the join between IRIs with the same template into a join
between the underlying database attributes, and finally return:

𝜋f (𝑎),g(𝑐) (T1 (𝑎) Z𝑎=𝑏 T2 (𝑏, 𝑐))
A similar analysis can be carried out for unions. For instance, con-
sider the following additional mapping:

m4 : 𝜋𝑏 (T2 (𝑏, 𝑐)) ⇝ 𝐴(f (𝑏))

Ontology-based Data Federation IJCKG 2022, October 27–29, 2022, Hangzhou, China

Algorithm 1: hintify(((T ,M,ΣS),D), Joins,Unions)
Input: An OBDF instance ((T,M,ΣS),D) , set Joins of joins, set Unions of unions.
Output: An OBDF instance ((T,M,ΣM

S),D
M) with materialized viewsM, a set E of

empty join hints, a set C of containment redundancy hints.
1 foreach 𝑗 in Joins do
2 if 𝑗 =D ∅ then
3 E ←↪ E ∪ { 𝑗 =D ∅}
4 else if 𝑗 is a federated join or it is over an inefficient source then
5 if 𝑠 is static for each 𝑠 ∈ src(𝑗) then
6 M←↪ M ∪ {V(. . .) ← 𝑗 }

7 foreach A ∪ B in Unions do
8 if A ⊆D B then
9 C ←↪ C ∪ {A ⊆D B}

10 if B ⊆D A then
11 C ←↪ C ∪ {B ⊆D A}

12 return ((T,M,ΣM
S),D

M) , E , C

Now, the unfolding for the same query becomes:

𝜋f (𝑎),g(𝑐) ((T1 (𝑎) ∪ 𝜋𝑏/𝑎 (T2 (𝑏, 𝑐))) Z𝑎=𝑏 T2 (𝑏, 𝑐))

Again, the union is between SQL columns (and not over the result
of applying the templates to DB values) only because the templates
are compatible. The same considerations apply to the case where
the SPARQL query itself contains a union operation (e.g., a query
retrieving all individuals in 𝐴 union all those having a 𝑃-successor).

The role of the ontology. Ontology axioms increase the number
of unions. Consider again the mappings m1,m2 above, and an on-
tology axiom ∃𝑃 ⊑ 𝐴, stating that the domain of property 𝑃 is class
𝐴. Then, our SPARQL query will unfold into the last SQL query
from the previous paragraph. In fact, it is well-known [35] that an-
swering SPARQL3 queries over an OWL 2QL ontology and a setM
of mappings can be reduced to the problem of answering SPARQL
queries over an empty ontology and an enriched set of mappings,
called T-mapping, obtained by compiling the ontology intoM. In
our example, it turns out that the set {𝑚1,𝑚2,𝑚4} of mappings is a
T-mapping compiling the axiom ∃𝑃 ⊑ 𝐴 into {𝑚1,𝑚2}.

Constructing the hints. Summing up, under the assumption of
using unfoldwrap for the translation, we derive the following obser-
vations: (1) the enumeration of possible joins between DB columns
can be carried out by an offline mappings analysis identifying com-
patible templates; (2) if the ontology is empty, the only possible
unions between database columns are those induced by mappings
with compatible templates; (3) the case of a non-empty ontology can
always be reduced to the case of an empty ontology by exploiting
the T-mapping technique. From (1)–(3), we conclude that it is possi-
ble to enumerate all possible SQL joins and unions by analyzing the
T-mapping of an OBDF specification. These are used by Algorithm 1
to compute data hints for an OBDF instance. The number of hints is
bound to 𝑛2, where 𝑛 is the number of attributes in the DB schema.
The worst case captures the scenario where every DB attribute is
mapped to the same URI template. Algorithm 1 needs to be re-ran
every time the sources get updated, which makes our approach less
suited to scenarios where sources are, e.g., streams of data.

3Assuming the SPARQL 1.1 Entailment Regime and OWL2QL.

5.2 Query Optimization Rules
We introduce a set of query optimization rules based on pre-
computed hints. The top part of Figure 3 shows well-known rules
commonly applied in OBDA systems [10, 35], and which are rele-
vant also in our approach. The bottom part introduces the novel
rules based on hints, which we now explain in detail.

The empty join elimination rule ejr removes empty joins from
SQL queries. To check the applicability of this rule, we rely on the
observation that, if a join between two relations appears in the
unfolding, then we have pre-computed it during the computation
of hints. Therefore, given a set E of empty join hints, computed as
in Algorithm 1, to verify A Z B =D ∅ it suffices to check whether
this expression belongs to E.

The containment elimination rule cr removes redundant unions
from SQL queries. As discussed for ejr, the applicability of this
rule can be verified through a membership check over the set C of
containment redundancies computed by Algorithm 1.

The equivalence elimination rule er replaces the operands of
joins or left outer joins with expressions. The applicability of the
rule involves checking a data containment (as for rule cr), and a
condition † that is verified only if the cost of the resulting expression
is less than the cost of the original one. In Section 5.3 we discuss a
way to compute such cost.

Finally, the materialization rule mtr replaces the federated joins
in the SQL query according to the views computed by Algorithm 1.

5.3 Cost Model
The application of the rules introduced in Section 5.2 is guided by
a cost model, which associates an evaluation cost to each SQL query.
Our cost model is based on the following heuristic arguments:

(1) Local joins are preferred to federated joins.
(2) Efficient sources should be favored over inefficient ones.
(3) Redundant and empty sub-expressions should be eliminated.
(4) Whenever available, materialized views are preferred.

Besides such heuristics specific to the federated setting, we also
assume the standard heuristics for the OBDA setting [35]:

(5) URI templates should be applied at the highest level possible
of the algebra tree.

(6) Joins should be pushed inside unions (see rule dlr).
(7) Self-joins and redundant unions should be eliminated (see,

e.g., rule sjr).
We now introduce our cost measure, inspired by these heuristic as-
sumptions. For the remainder of this section, we fix a VDB instance
D for ΣS.

A terminal federated join is a query of the form FJ = (⋃𝑛
𝑖=1 A𝑖) ◦

(⋃𝑚
𝑗=1 B𝑗), where ◦ ∈ {⊲⊳, ⊲⊳}, and each A𝑖 and B𝑗 is an expression

over ΣS not containing joins. The cost of evaluating FJ over D is
estimated as: Costbase (FJ) = 𝑛 + 𝑚. In compliance with heuris-
tic (1) above, this measure favors the structure where unions are
folded into a single federated join, as opposed to the UCQ structure
(which would contain 𝑛 ∗𝑚, possibly federated, joins). In compli-
ance with (3) and (7), removing redundant operations from either
operand will decrease the cost of the expression.

Consider a SQL query 𝑞 over ΣS containing 𝑘 terminal federated
joins FJ1, . . . , FJ𝑘 , where Costbase (FJ𝑖) = 𝑐𝑖 , for 1 ≤ 𝑖 ≤ 𝑘 , and
let #ineff = Σ𝑆 ∈ {𝑆 ∈src(𝑞) | 𝑆 is inefficient} occ(𝑆, 𝑞) denote the total

IJCKG 2022, October 27–29, 2022, Hangzhou, China Gu et al.

Classic Optimizations Rules (COPT)
dlr

𝐴 Z (𝐵 ∪𝐶)

(𝐴 Z 𝐵) ∪ (𝐴 Z 𝐶)

sjr
𝜋r/a,t𝜎𝜃 (𝑇) Zr=s 𝜋s/a,t′𝜎𝜑 (𝑇)

𝜋r/a,t,s/a,t′𝜎𝜃∧𝜑 (𝑇)

pkey(𝑇) = a

ljr
𝐴 ⊲⊳ 𝐵

(𝐴 Z 𝐵) ∪ (𝐴 \ 𝜋sig(𝐴) (𝐴 Z 𝐵)) × Ωsig(𝐵)

(𝐴 ∪ 𝐵) ⊲⊳𝐶

(𝐴 ⊲⊳𝐶) ∪ (𝐵 ⊲⊳𝐶)

Hint-based Optimization Rules (HOPT)
ejr

A Z B

∅

𝐴 Z 𝐵 =D ∅

cr
A ∪ B

𝐵 𝐴

𝐴 ⊆D 𝐵 𝐵 ⊆D 𝐴

er
A ◦ B

𝐶 ◦ 𝐵 𝐴 ◦𝐶

𝐴 ≡D 𝐶 , † 𝐵 ≡D 𝐶 , †

◦ ∈ {Z, ⊲⊳}

mtr
A Z B

𝑉

𝑉 ← 𝐴 Z 𝐵 ∈ M

Figure 3: List of “standard” optimization rules applied by OBDA systems (first row), and the new rules specific to OBDF. The
former is not complete (e.g., we omit trivial transformations (e.g., commutativity) and the sjr variant for left-joins).

number of occurrences in 𝑞 of relations over inefficient sources.
Then the cost of evaluating 𝑞 over D is estimated as:

Cost(𝑞) = (Σ𝑘𝑖=1𝑐𝑖 , #ineff)
Finally, we define a partial order for comparing costs.

Definition 5.1 (Cost comparison). Consider two queries 𝑞1, 𝑞2
such that Cost(𝑞1) = (𝑛1, 𝑛2) and Cost(𝑞2) = (𝑚1,𝑚2). The cost
comparison relations ⪯ and ≺ are defined as:
• Cost(𝑞1) ⪯ Cost(𝑞2), if 𝑛𝑖 ≤ 𝑚𝑖 for each 𝑖 ∈ {1, 2};
• Cost(𝑞1) ≺ Cost(𝑞2) if Cost(𝑞1) ⪯ Cost(𝑞2), and 𝑛𝑖 < 𝑚𝑖

for some 𝑖 ∈ {1, 2}.

Note that our cost model is compliant with heuristics (1)-(7). For
instance, if a structural transformation increases the number of
joins in an expression, but these joins are local, then the cost of
such expression will still decrease (see heuristics (5) and (6)). Also,
whenever a materialized view is used, an inefficient or federated
join is removed from the expression, reducing either argument of
the cost value (heuristic (4)).

5.4 Hints-Based Unfolding Algorithm
We present a novel algorithm, unfoldOBDF, for translating federated
SPARQL queries over an OBDF system into SQL queries over a VDF
system. The algorithm relies on pre-computed hints, and applies
the optimization rules discussed in Section 5.2, guided by the cost-
model described in Section 5.3.

Algorithm 2 starts by computing a translation of a SPARQL
query 𝑄 w.r.t. (T ,M,ΣS) (Line 1). For the translation it adopts
unfoldwrap, discussed in Section 2, because such an algorithm max-
imizes the number of unions between source relations.

By hint construction, each redundant union must occur in C.
Therefore, identifying redundant unions reduces to a set member-
ship check (Lines 3 and 8).

Line 4 uses the cost-model to determine the specific application
branch of rule cr, in case the containment holds in both directions.

After having removed as many redundant unions as possible, the
algorithm attempts to remove joins. To this aim, a UCQ-like form
is more suited, since it maximizes the number of join operations
between source relations. To perform this structural transformation,
the algorithm iteratively applies rule dlr (Line 11).

Sub-procedure applyExaustively (Line 12) removes redundant
self-joins, and transforms federated joins or joins between inef-
ficient sources either into local joins through the application of
rule er, or into queries over the materialized views through the

Algorithm 2: unfoldOBDF (𝑄, ((T ,M,ΣM
S),D

M), E, C)
Input: A SPARQL query𝑄 over the OBDF instance ((T,M,ΣM

S),D
M) with

materialized viewsM, a set E of empty join hints, a set C of containment
redundancy hints;

Output: A translation 𝑞′ of𝑄 w.r.t. (T,M) and the view definitionsM.
1 𝑞 ←↪ unfoldwrap (𝑄) ;
2 foreach

⋃𝑛
𝑖=1 A𝑖 in 𝑞 s.t. there exists data redundancy btw A𝑘 and Aℓ do

/* Apply exahustively rule cr. */

3 if A𝑘 ≡D A𝑙 ∈ C then
4 if Cost(𝑞 [⋃𝑛

𝑖=1 A𝑖 /
⋃𝑛
𝑖=1,𝑖≠𝑘 A𝑖]) ≺ Cost(𝑞 [⋃𝑛

𝑖=1 A𝑖 /
⋃𝑛
𝑖=1,𝑖≠𝑙 A𝑖])

then
5 𝑞 ←↪ 𝑞 [⋃𝑛

𝑖=1 A𝑖 /
⋃𝑛
𝑖=1,𝑖≠𝑘 A𝑖];

6 else
7 𝑞 ←↪ 𝑞 [⋃𝑛

𝑖=1 A𝑖 /
⋃𝑛
𝑖=1,𝑖≠𝑙 A𝑖];

8 else if A𝑘 ⊆D Aℓ ∈ C then
9 𝑞 ←↪ 𝑞 [⋃𝑛

𝑖=1 A𝑖 /
⋃𝑛
𝑖=1,𝑖≠𝑘 A𝑖];

10 foreach terminal federated join FJ : (⋃𝑛
𝑖=1 A𝑖) ⊲⊳𝜃 (

⋃𝑚
𝑗=1 B𝑗) in 𝑞 where 𝑛,𝑚 ≥ 1 do

/* Push joins into unions by applying rules dlr */

11 E←↪
⋃𝑛
𝑖=1

⋃𝑚
𝑗=1 (A𝑖 ⊲⊳𝜃 B𝑗) ;

/* Apply rules for join optimizations */

12 E′ ←↪ applyExaustively(E, {ejr, er,mtr, sjr}) ;
/* Fold unions of joins into joins of unions */

13 while there exists appplication: E′ →dlr− E′′ and Cost(E′′) ≺ Cost(E′) do
14 E′ ←↪ E′′

/* Accept the change only if there is improvement. */

15 if Cost(𝑞 [FJ/E′]) ≺ Cost(𝑞) then
16 𝑞 ←↪ 𝑞 [FJ/E′];

17 foreach terminal federated join FJ : (⋃𝑛
𝑖=1 A𝑖) ⊲⊳𝜃 (

⋃𝑛
𝑗=1 B𝑗) in 𝑞 where 𝑛,𝑚 ≥ 1 do

18 Proceed similarly as for inner joins;

19 return 𝑞;

application of rulemtr. Observe that procedure applyExaustively
is terminating: each application of ejr, sjr, and mtr reduces the
size of E, and each application of er reduces Cost(E). Again, to
decide the applicability of each of these rules it suffices to solve a
membership problem in E, C, orM.

Note that the application of rule dlr in Line 11 potentially in-
troduces a large number of joins, many of which might even be
federated or over inefficient sources. Hence, even after the opti-
mizations applied in Line 12, the algorithm tries to fold-back the
structure of the query (Lines 13 and 14) through an inverse applica-
tion of dlr.

After these steps, if the optimization of the federated join led to
an improvement of the overall cost, then the changes are accepted
and incorporated in 𝑞 (Lines 15 and 16).

After a similar strategy for left outer joins is applied, the algo-
rithm returns the final translation, whose cost is lower than or
equal to the cost of the initial unfolding.

Ontology-based Data Federation IJCKG 2022, October 27–29, 2022, Hangzhou, China

𝜋!(#), &('), (()), *(+') (
(𝜋#/-#.,#//-#.,'/-'01* (CG1) ∪ 𝜋#/2#.,#//2#.,'/2'01*(SG2)) ⋈!(#/)3!(#4)
(𝜋#4/-#.,)/-#'2+ (CG1) ∪ 𝜋#4/2#.,)/2#'2+(SG2))⋈!())3!(+#)
(𝜋+#/+##.,+'/+#'01* (PerInfo3) ∪ 𝜋+#/*#.,+'/*'01* (Employee4)))

𝜋!(#), &('), (()), *(+') (
(𝜋#/-#.,'/-'01*,)/-#'2+ (CG1) ∪ 𝜋#/2#.,'/2'01*,)/2#'2+(SG2))⋈!())3!(+#)
(𝜋+#/+##.,+'/+#'01* (PerInfo3) ∪ 𝜋+#/*#.,+'/*'01* (Employee4)))

q2

q1𝜋!(#), &('), (()), *(+') (
(𝜋#/-#. (CG1) ∪ 𝜋#/2#. (SG2))⋈!(#)3!(#/)
(𝜋#//-#.,'/-'01* (CG1) ∪ 𝜋#//2#.,'/2'01*(SG2)) ⋈!(#/)3!(#4)
(𝜋#4/-#.,)/-#'2+ (CG1) ∪ 𝜋#4/2#.,)/2#'2+(SG2))⋈!())3!(+#)
(𝜋+#/+##.,+'/+#'01* (PerInfo3) ∪ 𝜋+#/*#.,+'/*'01* (Employee4)))

q

𝜋!(#), &('), (()), *(+') (
(𝜋#/-#.,'/-'01*,)/-#'2+ (CG1) ∪ 𝜋#/2#.,'/2'01*,)/2#'2+(SG2))⋈!())3!(+#)
(𝜋+#/+##.,+'/+#'01* (PerInfo3)))

q3

SELECT * WHERE {
?x a :Product;
:prodName ?y;
:hasInspector ?z .
?z :hasName ?n }

Q

Figure 4: An example of translating a SPARQL query to SQL under hints.

Example 5.2. Consider again the OBDF specification and
SPARQL query from Example 3.2, and an OBDF instance
(F ,D) of F . Suppose all “id” columns to be primary keys
for the respective tables. Suppose we have the empty fed-
erated join hint CG1 Z𝑐𝑖𝑑=𝑠𝑖𝑑 SG2 =D ∅ and the contain-
ment redundancy hint 𝜋𝑝𝑖𝑑/𝑝𝑖𝑖𝑑,𝑝𝑛𝑎𝑚𝑒/𝑝𝑖𝑛𝑎𝑚𝑒 (PerInfo3) ≡D
𝜋𝑝𝑖𝑑/𝑒𝑖𝑑,𝑝𝑛𝑎𝑚𝑒/𝑒𝑛𝑎𝑚𝑒 (Employee4), and that 𝑆1, 𝑆2, and 𝑆3 have
been labelled as efficient, while 𝑆4 as inefficient. Then, Figure 4
illustrates how the above hints and labels are exploited in order
to further unfold the SQL translation 𝑞 of 𝑄 . The translation goes
as follows, where we assume that the operators in the query
expression are processed in order from left to right:

(1) The federated join Z𝑖=𝑖1 is first unfolded into a union of
4 joins and then traslated into 𝜋𝑖/𝑐𝑖𝑑,𝑖1/cid,𝑛/cname (CG1) ∪
𝜋𝑖/sid,𝑖1/sid,𝑛/sname (SG2) on the basis of the empty join hint
and the application of the rule sjr.

(2) Similarly, the intermediate 𝑞1 is translated into query 𝑞2.
(3) On the basis of containment redundancy hint and the given

source labelling, the union between PerInfo3 and Employee4
is then removed by the application of rule cr, and only the
projection over the fastest source PerInfo3 is kept in the
resulting query 𝑞3.

Each unfold step reduces the query’s cost, and Cost(q3) ≺ Cost(q).

6 EVALUATION
We have carried out an extensive experiment to verify the effec-
tiveness of the proposed optimizations. We ran the experiments
on an HP Proliant server with 2 Intel Xeon X5690 Processors (each
with 12 logical cores at 3.47 GHz), 106GB of RAM and five 1TB 15K
RPM HDs. For database systems, we have employed PostgreSQL 14,
DB2 11.5.7.0, MySQL 8.0.28 and MS SQL Server 2019 as relational
systems, MongoDB 4.4.13 as the NoSQL system, and Teiid 16.0.0 as
the federation engine.

The material for reproducing the experiments and the appendix
of this work are available at: https://github.com/efghk321456/sc.

6.1 Experiment Setup
Our experiment is based on the well-known Berlin SPARQL Bench-
mark (BSBM) [5]. BSBM is built around an e-commerce use case
in which a set of products is offered by different vendors and con-
sumers have posted reviews about products. The data is organized
as ten relational tables.

Data sets. We generate 5 data sets out of the original BSBM
tables, while introducing data partitioning and redundancy to sim-
ulate the scenarios where data from different sources are mapped

to the same classes in the ontology. We split the tables Product,
ProductFeatureProduct, and ProductTypeProduct “horizontally”
according to their product IDs, into two data sets D1 and D2.
We make a copy of the table Review and put it into D1. Dataset
D3 contains ProductType and ProductFeature; D4 contains Offer,
Producer, and Vendor; D5 contains Review and Person.

Data sources. We store the 5 data sets in different database sys-
tems and derive 8 data sources in total. D1–D5 are stored in RDBs
and data sources 𝑆1–𝑆5 are obtained. We convert the tables in D2
and D4 to CSV files to obtain two more data sources 𝑆 ′2 and 𝑆

′
4. We

convert D5 into JSON files, stored them in MongoDB, and obtain a
data source 𝑆 ′5.

OBDA/OBDF specifications. We use the ontology and mappings
from [44] for OBDA, with minor modifications on the mappings for
handling the different DBs. As base lines, we generate two OBDA
specifications using two centralized RDBs: sc1, containing the origi-
nal BSBM tables, and sc2, containing the tables in 𝑆1−𝑆5. We create
two OBDF specifications over Teiid: a homogeneous (relational)
one,Hom, defined over sources 𝑆1−𝑆5, and a heterogeneous one (in
which some data are also in CSV files and MongoDB) het, defined
over the sources {𝑆1, 𝑆 ′2, 𝑆3, 𝑆

′
4, 𝑆
′
5}. For each OBDF specification,

the hints include 3 empty federated joins, 1 data redundancy, and 6
materialized views (see the appendix). The materialized views are
stored in a local PostgreSQL DB.

6.2 Query Evaluation and Result Analysis

Table 1: Performance change compared with the sc1 setting

sc1 sc2 hom homopt hommatv
opt het hetopt hetmatv

opt

200K 1.0 8.4 8.5 0.6 0.4 254.9 54.6 12.2
2M 1.0 59.7 67.5 1.8 0.6 922.9 205.7 52.1

For scalability testing, we generate three groups of instances us-
ing the BSBM data generating tool, setting the numbers of products
to be 20K, 200K and 2M. In this way each OBDA/OBDF specifica-
tion has 3 instances. For each OBDF instance, the hints, including
data redundancy, empty federated joins, and materialized views,
are pre-computed following the approach in Section 5.1. For space
reasons, we only report the results on 200K and 2M. Further details
are listed in the Appendix.

We consider the 12 SPARQL queries 𝑄1 to 𝑄12 from the BSBM
benchmark. The SQL queries without optimization with hints are
generated by Ontop, and the optimized ones are computedmanually
following the algorithms in Section 5. All queries were ran 12 times:

https://github.com/efghk321456/sc

IJCKG 2022, October 27–29, 2022, Hangzhou, China Gu et al.

1

10

100

1000

10000

100000

1000000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

sc1 sc2 hom het hom-opt hom-opt-matv het-opt het-opt-matv

1

10

100

1000

10000

100000

1000000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

sc1 sc2 hom het hom-opt hom-opt-matv het-opt het-opt-matv

Figure 5: Results (time in ms) of SQL evaluation with factors 200K (left) and 2M (right).

Table 2: Usage of hints in federated queries

Query 𝑄1 𝑄2 𝑄3 𝑄4 𝑄5 𝑄6 𝑄7 𝑄8 𝑄9 𝑄10 𝑄11 𝑄12

Hints EFJ EFJ,MatV EFJ EFJ EFJ EFJ,DR DR, EFJ DR DR MatV −− MatV
Before 𝑆1, 𝑆2 𝑆1, 𝑆2, 𝑆4 𝑆1, 𝑆2 𝑆1, 𝑆2 𝑆1, 𝑆2 𝑆1 − 𝑆5 𝑆1, 𝑆2, 𝑆4, 𝑆5 𝑆1, 𝑆5 𝑆1, 𝑆5 𝑆1, 𝑆2, 𝑆4 𝑆4 𝑆1, 𝑆2, 𝑆4
After 𝑆1, 𝑆2 𝑆M 𝑆1, 𝑆2 𝑆1, 𝑆2 𝑆1, 𝑆2 𝑆1, 𝑆3, 𝑆5 𝑆1, 𝑆2, 𝑆4, 𝑆5 𝑆5 𝑆1, 𝑆5 𝑆M, 𝑆4 𝑆4 𝑆M, 𝑆4

2 warm-up runs, and 10 test runs. In each run, the queries were
instantiated with different parameters. The tests were ran by using
the testing platform of the NPD benchmark [26].

The SQL queries evaluation times are reported in Figure 5. In such
figure, homopt and hetopt denote the evaluation with the hints of
empty federated joins and redundancies; and hommatv

opt and hetmatv
opt

employed all the hints including materialized views.
To highlight the differences between the setups, we compute the

aggregated ratios of running times compared with sc1, reported in
Table 1. Concretely, for each setup c, the values are computed by(∏𝑁

𝑖=1
𝑡 c
𝑖

𝑡 sc1
𝑖

) 1
𝑁 , where 𝑁=12 is the number of queries, and 𝑡c

𝑖
and

𝑡
sc1

𝑖
are the times of evaluating 𝑄𝑖 in setup c and sc1, respectively.
Table 2 reports the hints used for each query, and the data sources

accessed before and after the optimization with respect to the hints.
Hereafter, we summarize the main outcomes of our experiments:

(a) Comparing sc1 and sc2, we conclude that data partitioning
alone can render query answering less efficient.

(b) Comparing hom and sc2, we notice that simply adding a feder-
ation layer does not have a significant impact on query answer-
ing. In some cases, the federated queries are evaluated even
faster. Most probably, for those queries involving unions of
joins, the evaluation is performed by Teiid in a parallel way.

(c) Comparing hom and het, we see that federation of heteroge-
neous data sources shows a significant performance decrease,
which can be explained by the fact that accessing non-relational
sources is rather expensive.

(d) Looking at the three cases about hom, we see that optimization
with hints is very effective. In particular, when all the hints are
employed, the performance is much better than sc2, and even
closer to sc1. Actually, from Figure 5, almost half of the queries
in the 200K and 2M product cases perform better than sc1.

(e) In the heterogeneous cases, optimization also helps, but the
impact is not as significant as for the homogeneous cases. Still,
we do observe that when materialized views can be used, the
performance can be improved dramatically.

7 RELATEDWORK
OBDA [12, 33] is a semantic technology-based paradigm that has
been developed since the mid 2000s [42, 43] with the aim to ease the
access to legacy data stored in relational data source. Most research
in this field has focused on query rewriting [8, 9, 13, 18, 24, 25, 32, 41],
that is, on the problem of reformulating queries over the virtual
RDF graph into an equivalent query over the data source.

Data federation studies the problem of accessing multiple, dis-
tributed and possibly heterogeneous data sources [2, 3, 16, 17, 23,
29, 31, 36, 37, 39, 40] via a unified schema. Many mature and high-
optimized data federation systems have been developed in both
academia and industry (e.g., ANAPSID, Teiid, and Denodo). For a
comprehensive and up-to-date survey of these systems, and a brief
overlook on the main optimization techniques used therein, the
interested reader might refer to [19].

8 CONCLUSION
This work introduces the Ontology-based Data Federation setting
and studies the problem of optimizing query translations in this
setting. We provide techniques to address this problem, which
are based on source data information that can be automatically
computed in an offline stage by exploiting the information encoded
in an OBDF specification. We performed an extensive empirical
evaluation, showing that our techniques have a significant impact
on the overall performance of query answering.

In this work we laid the foundations of OBDF. In future work
we plan on further investigating hint-based optimizations, as well
as implementing our algorithms in an actual system and applying
OBDF to tackle complex, real-world scenarios. Amore sophisticated
handling of static and dynamic sources (e.g., [6]) might be necessary
in these scenarios.

ACKNOWLEDGMENTS
This research has been partially supported by the EU H2020 project
INODE (grant agreement No. 863410), by the Italian PRIN project
HOPE (2019-2022), by the Free University of Bozen-Bolzano through
the project MP4OBDA, and by the “Fusion Grant” project HIVE.

Ontology-based Data Federation IJCKG 2022, October 27–29, 2022, Hangzhou, China

REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison Wesley Publ. Co.
[2] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna

Ruckhaus. 2011. ANAPSID: An Adaptive Query Processing Engine for SPARQL
Endpoints. In The Semantic Web - ISWC 2011 - 10th International Semantic Web
Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 7031), Lora Aroyo, Chris Welty, Harith Alani, Jamie Tay-
lor, Abraham Bernstein, Lalana Kagal, Natasha Fridman Noy, and Eva Blomqvist
(Eds.). Springer, 18–34. https://doi.org/10.1007/978-3-642-25073-6_2

[3] Rana Alotaibi, Bogdan Cautis, Alin Deutsch, Moustafa Latrache, Ioana Manolescu,
and Yifei Yang. 2020. ESTOCADA: Towards Scalable Polystore Systems. Proc.
VLDB Endow. 13, 12 (2020), 2949–2952. https://doi.org/10.14778/3415478.3415516

[4] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter F.
Patel-Schneider (Eds.). 2007. The Description Logic Handbook: Theory, Implemen-
tation and Applications (2nd ed.). Cambridge University Press.

[5] Christian Bizer and Andreas Schultz. 2009. The Berlin SPARQL Benchmark. Int.
J. on Semantic Web and Information Systems 5, 2 (2009), 1–24.

[6] Carlos Bobed, Fernando Bobillo, Sergio Ilarri, and Eduardo Mena. 2014. An-
swering Continuous Description Logic Queries: Managing Static and Volatile
Knowledge in Ontologies. Int. J. Semant. Web Inf. Syst. 10, 3 (jul 2014), 1–44.
https://doi.org/10.4018/IJSWIS.2014070101

[7] Damian Bursztyn, François Goasdoué, and IoanaManolescu. 2015. Reformulation-
based Query Answering in RDF: Alternatives and Performance. Proc. of the VLDB
Endowment 8, 12 (2015), 1888–1891. http://www.vldb.org/pvldb/vol8/p1888-
bursztyn.pdf

[8] Damian Bursztyn, François Goasdoué, and Ioana Manolescu. 2016. Teaching an
RDBMS about ontological constraints. Proc. VLDB Endow. 9, 12 (2016), 1161–1172.
https://doi.org/10.14778/2994509.2994532

[9] Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2012. A general Datalog-
based framework for tractable query answering over ontologies. J. Web Semant.
14 (2012), 57–83. https://doi.org/10.1016/j.websem.2012.03.001

[10] Diego Calvanese, Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Da-
vide Lanti, Martin Rezk, Mariano Rodriguez-Muro, and Guohui Xiao. 2017. Ontop:
Answering SPARQL Queries over Relational Databases. Semantic Web J. 8, 3
(2017), 471–487. https://doi.org/10.3233/SW-160217

[11] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
Antonella Poggi, Mariano Rodriguez-Muro, Riccardo Rosati, Marco Ruzzi, and
Domenico Fabio Savo. 2011. The Mastro System for Ontology-Based Data Access.
Semantic Web J. 2, 1 (2011), 43–53.

[12] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. 2007. Tractable Reasoning and Efficient Query Answering
in Description Logics: The DL-Lite Family. J. of Automated Reasoning 39, 3 (2007),
385–429. https://doi.org/10.1007/s10817-007-9078-x

[13] Alexandros Chortaras, Despoina Trivela, and Giorgos B. Stamou. 2011. Optimized
Query Rewriting for OWL 2 QL. In Automated Deduction - CADE-23 - 23rd
International Conference on Automated Deduction, Wroclaw, Poland, July 31 -
August 5, 2011. Proceedings (Lecture Notes in Computer Science, Vol. 6803), Nikolaj S.
Bjørner and Viorica Sofronie-Stokkermans (Eds.). Springer, 192–206. https:
//doi.org/10.1007/978-3-642-22438-6_16

[14] Souripriya Das, Seema Sundara, and Richard Cyganiak. 2012. R2RML: RDB to
RDF Mapping Language. W3C Recommendation. World Wide Web Consortium.
Available at http://www.w3.org/TR/r2rml/.

[15] AnHai Doan, Alon Y. Halevy, and Zachary G. Ives. 2012. Principles of Data
Integration. Morgan Kaufmann.

[16] Jennie Duggan, Aaron J. Elmore, Michael Stonebraker, Magdalena Balazinska, Bill
Howe, Jeremy Kepner, Sam Madden, David Maier, Tim Mattson, and Stanley B.
Zdonik. 2015. The BigDAWG Polystore System. SIGMOD Rec. 44, 2 (2015), 11–16.
https://doi.org/10.1145/2814710.2814713

[17] Kemele M. Endris, Philipp D. Rohde, Maria-Esther Vidal, and Sören Auer. 2019.
Ontario: Federated Query Processing Against a Semantic Data Lake. In Database
and Expert Systems Applications - 30th International Conference, DEXA 2019, Linz,
Austria, August 26-29, 2019, Proceedings, Part I (Lecture Notes in Computer Science,
Vol. 11706), Sven Hartmann, Josef Küng, Sharma Chakravarthy, Gabriele Anderst-
Kotsis, A Min Tjoa, and Ismail Khalil (Eds.). Springer, 379–395. https://doi.org/
10.1007/978-3-030-27615-7_29

[18] Georg Gottlob, Giorgio Orsi, and Andreas Pieris. 2014. Query Rewriting and
Optimization for Ontological Databases. ACM Trans. Database Syst. 39, 3 (2014),
25:1–25:46. https://doi.org/10.1145/2638546

[19] Zhenzhen Gu, Francesco Corcoglioniti, Davide Lanti, Alessandro Mosca, Guohui
Xiao, Jing Xiong, and Diego Calvanese. 2022. A systematic overview of data
federation systems. Semantic Web J. (2022). To appear in print. Available
at tinyurl.com/48tpyy88.

[20] Laura M. Haas, Eileen Tien Lin, andMary A. Roth. 2002. Data Integration through
Database Federation. IBM Systems J. 41, 4 (2002), 578–596.

[21] Alon Y. Halevy. 2001. Answering Queries Using Views: A Survey. Very Large
Database J. 10, 4 (2001), 270–294.

[22] Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. W3C
Recommendation. World Wide Web Consortium. Available at http://www.w3.
org/TR/sparql11-query.

[23] Yasar Khan, Antoine Zimmermann, Alokkumar Jha, Vijay Gadepally, Mathieu
d’Aquin, and Ratnesh Sahay. 2019. One Size Does Not Fit All: Querying Web
Polystores. IEEE Access 7 (2019), 9598–9617. https://doi.org/10.1109/ACCESS.
2018.2888601

[24] Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev. 2012. Conjunc-
tive Query Answering with OWL 2 QL. In Principles of Knowledge Representation
and Reasoning: Proceedings of the Thirteenth International Conference, KR 2012,
Rome, Italy, June 10-14, 2012, Gerhard Brewka, Thomas Eiter, and Sheila A. McIl-
raith (Eds.). AAAI Press.

[25] Mélanie König, Michel Leclère, Marie-Laure Mugnier, and Michaël Thomazo.
2013. On the Exploration of the Query Rewriting Space with Existential Rules.
In Web Reasoning and Rule Systems - 7th International Conference, RR 2013,
Mannheim, Germany, July 27-29, 2013. Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 7994), Wolfgang Faber and Domenico Lembo (Eds.). Springer, 123–137.
https://doi.org/10.1007/978-3-642-39666-3_10

[26] Davide Lanti, Martin Rezk, Guohui Xiao, and Diego Calvanese. 2015. The NPD
Benchmark: Reality Check for OBDA Systems. In Proc. of the 18th Int. Conf. on
Extending Database Technology (EDBT). OpenProceedings.org, 617–628. https:
//doi.org/10.5441/002/edbt.2015.62

[27] Davide Lanti, Guohui Xiao, and Diego Calvanese. 2017. Cost-Driven Ontology-
Based Data Access. In Proc. of the 16th Int. Semantic Web Conf. (ISWC) (Lecture
Notes in Computer Science, Vol. 10587). Springer, 452–470. https://doi.org/10.1007/
978-3-319-68288-4_27

[28] Davide Lanti, Guohui Xiao, and Diego Calvanese. 2019. VIG: Data Scaling for
OBDA Benchmarks. Semantic Web J. 10, 2 (2019), 413–433. https://doi.org/10.
3233/SW-180336

[29] Mohamed Nadjib Mami, Damien Graux, Simon Scerri, Hajira Jabeen, Sören
Auer, and Jens Lehmann. 2019. Squerall: Virtual Ontology-Based Access to
Heterogeneous and Large Data Sources. In The Semantic Web - ISWC 2019 - 18th
International Semantic Web Conference, Auckland, New Zealand, October 26-30,
2019, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 11779), Chiara
Ghidini, Olaf Hartig, Maria Maleshkova, Vojtech Svátek, Isabel F. Cruz, Aidan
Hogan, Jie Song, Maxime Lefrançois, and Fabien Gandon (Eds.). Springer, 229–245.
https://doi.org/10.1007/978-3-030-30796-7_15

[30] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and
Carsten Lutz. 2012. OWL 2Web Ontology Language Profiles (Second Edition). W3C
Recommendation. World Wide Web Consortium. Available at http://www.w3.
org/TR/owl2-profiles/.

[31] Andriy Nikolov, Peter Haase, Johannes Trame, and Artem Kozlov. 2017. Ephedra:
Efficiently Combining RDF Data and Services Using SPARQL Federation. In
Knowledge Engineering and Semantic Web - 8th International Conference, KESW
2017, Szczecin, Poland, November 8-10, 2017, Proceedings (Communications in
Computer and Information Science, Vol. 786), Przemyslaw Rózewski and Christoph
Lange (Eds.). Springer, 246–262. https://doi.org/10.1007/978-3-319-69548-8_17

[32] Héctor Pérez-Urbina, Boris Motik, and Ian Horrocks. 2010. Tractable query
answering and rewriting under description logic constraints. J. Appl. Log. 8, 2
(2010), 186–209. https://doi.org/10.1016/j.jal.2009.09.004

[33] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo,
Maurizio Lenzerini, and Riccardo Rosati. 2008. Linking Data to Ontologies. J. on
Data Semantics 10 (2008), 133–173. https://doi.org/10.1007/978-3-540-77688-8_5

[34] Freddy Priyatna, Oscar Corcho, and Juan F. Sequeda. 2014. Formalisation and
Experiences of R2RML-based SPARQL to SQL Query Translation Using morph.
In Proc. of the 23rd Int. World Wide Web Conf. (WWW). 479–490. https://doi.org/
10.1145/2566486.2567981

[35] Mariano Rodriguez-Muro, Roman Kontchakov, and Michael Zakharyaschev. 2013.
Ontology-Based Data Access: Ontop of Databases. In Proc. of the 12th Int. Semantic
Web Conf. (ISWC) (Lecture Notes in Computer Science, Vol. 8218). Springer, 558–573.
https://doi.org/10.1007/978-3-642-41335-3_35

[36] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. 2014. HiBISCuS:
Hypergraph-Based Source Selection for SPARQL Endpoint Federation. In The
Semantic Web: Trends and Challenges - 11th International Conference, ESWC
2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings (Lecture Notes in
Computer Science, Vol. 8465), Valentina Presutti, Claudia d’Amato, Fabien Gan-
don, Mathieu d’Aquin, Steffen Staab, and Anna Tordai (Eds.). Springer, 176–191.
https://doi.org/10.1007/978-3-319-07443-6_13

[37] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.
2011. FedX: Optimization Techniques for Federated Query Processing on Linked
Data. In Proc. of the 10th Int. SemanticWeb Conf. (ISWC) (Lecture Notes in Computer
Science, Vol. 7031). Springer, 601–616.

[38] Juan F. Sequeda and Daniel P. Miranker. 2013. Ultrawrap: SPARQL Execution on
Relational Data. J. of Web Semantics 22 (2013), 19–39.

[39] Amit P. Sheth and James A. Larson. 1990. Federated Database Systems for
Managing Distributed, Heterogeneous, and Autonomous Databases. Comput.
Surveys 22, 3 (1990), 183–236.

https://doi.org/10.1007/978-3-642-25073-6_2
https://doi.org/10.14778/3415478.3415516
https://doi.org/10.4018/IJSWIS.2014070101
http://www.vldb.org/pvldb/vol8/p1888-bursztyn.pdf
http://www.vldb.org/pvldb/vol8/p1888-bursztyn.pdf
https://doi.org/10.14778/2994509.2994532
https://doi.org/10.1016/j.websem.2012.03.001
https://doi.org/10.3233/SW-160217
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1007/978-3-642-22438-6_16
https://doi.org/10.1007/978-3-642-22438-6_16
http://www.w3.org/TR/r2rml/
https://doi.org/10.1145/2814710.2814713
https://doi.org/10.1007/978-3-030-27615-7_29
https://doi.org/10.1007/978-3-030-27615-7_29
https://doi.org/10.1145/2638546
tinyurl.com/48tpyy88
http://www.w3.org/TR/sparql11-query
http://www.w3.org/TR/sparql11-query
https://doi.org/10.1109/ACCESS.2018.2888601
https://doi.org/10.1109/ACCESS.2018.2888601
https://doi.org/10.1007/978-3-642-39666-3_10
https://doi.org/10.5441/002/edbt.2015.62
https://doi.org/10.5441/002/edbt.2015.62
https://doi.org/10.1007/978-3-319-68288-4_27
https://doi.org/10.1007/978-3-319-68288-4_27
https://doi.org/10.3233/SW-180336
https://doi.org/10.3233/SW-180336
https://doi.org/10.1007/978-3-030-30796-7_15
http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1007/978-3-319-69548-8_17
https://doi.org/10.1016/j.jal.2009.09.004
https://doi.org/10.1007/978-3-540-77688-8_5
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1145/2566486.2567981
https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.1007/978-3-319-07443-6_13

IJCKG 2022, October 27–29, 2022, Hangzhou, China Gu et al.

[40] Ruben Taelman, JoachimVanHerwegen, Miel Vander Sande, and Ruben Verborgh.
2018. Comunica: A Modular SPARQL Query Engine for the Web. In The Semantic
Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA,
USA, October 8-12, 2018, Proceedings, Part II (Lecture Notes in Computer Science,
Vol. 11137), Denny Vrandecic, Kalina Bontcheva, Mari Carmen Suárez-Figueroa,
Valentina Presutti, Irene Celino, Marta Sabou, Lucie-Aimée Kaffee, and Elena
Simperl (Eds.). Springer, 239–255. https://doi.org/10.1007/978-3-030-00668-6_15

[41] Michaël Thomazo. 2013. Compact Rewritings for Existential Rules. In IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, Francesca Rossi (Ed.). IJCAI/AAAI, 1125–1131.
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6826

[42] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella
Poggi, Riccardo Rosati, and Michael Zakharyaschev. 2018. Ontology-Based Data
Access: A Survey. In Proc. of the 27th Int. Joint Conf. on Artificial Intelligence

(IJCAI). IJCAI Org., 5511–5519. https://doi.org/10.24963/ijcai.2018/777
[43] Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego Calvanese. 2019. Virtual

Knowledge Graphs: An Overview of Systems and Use Cases. Data Intelligence 1,
3 (2019), 201–223. https://doi.org/10.1162/dint_a_00011

[44] Guohui Xiao, Roman Kontchakov, Benjamin Cogrel, Diego Calvanese, and Elena
Botoeva. 2018. Efficient Handling of SPARQL Optional for OBDA. In Proc. of the
17th Int. Semantic Web Conf. (ISWC) (Lecture Notes in Computer Science). Springer,
354–373.

[45] Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem Güzel-
Kalayci, Linfang Ding, Julien Corman, Benjamin Cogrel, Diego Calvanese, and
Elena Botoeva. 2020. The Virtual Knowledge Graph System Ontop. In Proc. of the
19th Int. Semantic Web Conf. (ISWC) (Lecture Notes in Computer Science, Vol. 12507).
Springer, 259–277. https://doi.org/10.1007/978-3-030-62466-8_17

https://doi.org/10.1007/978-3-030-00668-6_15
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6826
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1007/978-3-030-62466-8_17

	Abstract
	1 Introduction
	2 Preliminaries
	3 Ontology-based Data Federation
	4 Data Hints
	5 Query Optimization in OBDF
	5.1 Pre-Computation of Hints
	5.2 Query Optimization Rules
	5.3 Cost Model
	5.4 Hints-Based Unfolding Algorithm

	6 Evaluation
	6.1 Experiment Setup
	6.2 Query Evaluation and Result Analysis

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

